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Abstract: The essence of the point cloud is to express geometric information about objects by getting discrete coordinates on their 

surfaces. However, with a million points, this data may record redundant details in which it is needless to be kept for the model’s 

analysis. In addition, there is also a limitation where the processors cannot process the large-size datasets. The point cloud 

simplification algorithm was developed to solve the stated obstacles in data processing. Numerous algorithms have been published to 

produce the best methods for data reduction process. Since the simplification process might eliminate essential features of the data, 

this study introduces the features preservation process to keep the important points before the simplification. This study employed the 

Fuzzy C-Means (FCM) algorithms for the simplification stage due to their simplicity and ability to generate an accurate result. 

Regardless, the FCM still suffers from drawbacks, where their initial cluster centres are prone to fall into local optima. This study 

improved the FCM by employing the Score and Minimum Distance (SMD) to determine the number of clusters and cluster centres. The 

SMD is enhanced by changing the Gaussian to Cosine kernel function to increase the accuracy. This new technique is named SMD(C)-

IFCM. The method was then applied to the 3D point cloud of a box, cup, and Stanford bunny. The performance of the developed 

method was compared with the original SMD-FCM and SMD-IFCM for the percentage of the simplified data, error evaluation, and 

processing time. The result and analysis showed that the developed method had the best score, which was six (6) out of nine (9) 

measurements, compared to the other two methods with scores of one (1) and two (2) respectively. This score suggests that the 

developed algorithm successfully reduced the error evaluation and the processing time to generate the output. 
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1. Introduction 

A point cloud can be described as a collection of data points 

arranged in space. A three-dimensional (3D) structure or object 

might be represented by points, each with its Cartesian 

coordinate, which illustrates each point position (Wang & Kim, 

2019). The source of point clouds can be from a 3D scanner or a 

photogrammetry software, and other devices. 

 

Point clouds are used for various applications, including 

creating 3D Computer-Aided Design (CAD) models for 

manufactured components, metrology and quality inspection, 

and a variety of visualisation, animation, rendering, and mass 

customisation. In order to ensure that the result is reliable for 

later applications, the process of point cloud simulation must be 

precise (Hadi & Alias, 2019). However, by creating thousands of 

point clouds for each data set, the procedure of point cloud 

analysis might face some interference. Moreover, storage space 

and the processing time in analysing the point clouds are likely to 

be vast and prolonged, and a standard processor such as a laptop 

will reach its memory bottleneck. Removing random data from 

the dataset may eliminate the essential features of the data and 

give misleading information. It is crucial to preserve the features 

of an object since it gives measurements that specify the 

characteristics of an object (S. A. Halim et al., 2021). 

 

On that account, the technique of point cloud simplification 

was introduced to eliminate duplicate data points and reserve the 

essential and meaningful point position (Mahdaoui & Sbai, 2020). 

Based on the literature, simplification algorithm can be done 

using two approaches of creating polygonal networks on the point 

cloud data or using geometric details. However, several studies 

focused on the second approach as setting up polygonal networks 

can be extremely expensive in calculation and storage. The 

clustering process can be a handy approach in differentiating the 

necessary spots in the point cloud data sets. 

 

Accordingly, several clustering approaches have been 

published to simplify the point clouds while guaranteeing that the 

results will be accurate. One of the methods in data clustering 

that many researchers utilised was the Fuzzy C Means (FCM) 

algorithm, because it was proven to give satisfactory results. 

However, FCM still encountered drawbacks as their initial cluster 

centre was unstable, making it easy to fall into local optimal 
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2020). Considering that, the clustering results can be inaccurate. 

Therefore, improvement steps need to be done in the FCM to 

make the clustering process more trustworthy. 

 

Another stumbling block discovered in the FCM is that most 

of the existing methods used random cluster numbers and did not 

preserve the essential features, significantly influencing the 

simplification results. Thus, this can make the algorithm remove a 

wrong point cloud instead, and consequently, the output of the 

simplified point clouds could be unreliable. 

 

Therefore, this study improves the simplification method by 

generating an automatic number of clusters by utilising the Score 

and Minimum Distance of the Point Clouds (SMD). The SMD 

model by He et al. (2019) became the chosen method since it is 

an established technique in scoring each point cloud based on the 

density function in getting an optimal number of clusters. Rating 

the point clouds is the best conceptual method in generating the 

number of clusters. In addition, the method is also considered the 

theory of minimum distance as the cluster centres should not be 

close to each other to avoid unnecessary cluster creation.  

 

Moreover, the original SMD is improved by changing the 

Gaussian Kernel Function to Cosine Kernel Function, which has a 

higher accuracy, and the feature-preservation process is done 

before the simplification. This improvement can reduce errors 

from the wrong clustering process caused by a random number of 

clusters. Consequently, the output of a simplified algorithm can 

be more reliable as this process only retains an important point 

position. The formulation of the cluster number can make the 

whole process done automatically. The following are the study's 

main contributions: 

 

1) The number of cluster centres can be generated 

automatically without needing a user to decide 

beforehand. The SMD model is embedded into the 

algorithm, which will give the number of clusters and 

initial cluster centres that can overcome the drawbacks 

of FCM.  

2)     The algorithm also includes the techniques of preserving 

strong feature information of the point cloud, before 

being divided through the FCM. Consequently, the 

output of the simplification is the reduced point cloud 

data with the features reserved.  

3)    The discussion analysis has shown that the algorithm is   

effective to some extent.  

 

The flow of this paper is organized by section. Section 2 

reviews some works on the point cloud simplification and the 

FCM. The steps taken in the developed algorithm are illustrated 

in Section 3. The following section is where the result and 

discussion of the three datasets occurred. Lastly, the summary of 

this study and the suggested further direction can be found in 

Section 5. 

 

2. Literature Review   
A considerable amount of literature has been published on 

point cloud simplification. Among these papers, Xuan et al. (2018) 

described that point cloud simplification is a process that needs 

to be done to remove the redundant points while retaining the 

main geometric features of the object. Scanning the surface of a 

physical object using a 3D technology could produce a massive 

number of point clouds (Halim et al., 2017; Leal et al., 2017).   

 

Thus, to reduce the storage and computing problems, the 

point cloud simplification process plays an important role. In 

short, point cloud simplification can be defined as a process to 

eliminate duplicate data points while selecting important and 

meaningful 3D points (Mahdaoui & Sbai, 2020). In general, Wu et 

al. (2021) stated that there are two categories of point cloud 

simplification methods: (i) mesh-based, and (ii) mesh-free. The 

authors explained that mesh-based methods were constructed to 

set up polygonal networks on the point cloud data and cut down 

the point connectivity information. Meanwhile, the mesh-free 

approaches seek to assess the local neighbour information of 

cloud points and resample important spots among original point 

cloud data using geometric information. However, mesh-based 

methods are suffering from extreme complexity of computational 

issues since these approaches require geometric and topological 

computation (Ji et al., 2019; Wu et al., 2021). For that reason, the 

main focus of this research is to simplify the point cloud data using 

mesh-free methods or, more precisely, clustering algorithms. 

 

Most previous studies defined clustering as a process of 

dividing a set of data into clusters so that images in the same 

cluster are as similar as possible, while images from other clusters 

are as distinct as possible (Askari, 2021; Zhang et al., 2020). 

Mahdaoui & Sbai, (2020) described clustering as statistical 

dissection techniques used to categorise raw data into 

homogeneous groups. According to Askari (2021), clustering 

methods are classified into many types such as cluster-centric 

algorithms, K-means, and FCM, which determine the centres of 

groupings of data points using distance to measure similarity and 

dissimilarity. Density-based clustering could also mark adjacent 

data points with a particular concentration into a single cluster 

based on pre-set density and neighbourhood criteria. 

 

Nevertheless, Askari (2021) also stated that FCM is preferred 

by many researchers as the method used in data clustering. This 

view is supported by Zhang et al. (2020), who said that FCM 

developed from fuzzy logic is one of the most outstanding 

clustering methods due to its simplicity and efficacy. Despite that, 

the FCM still suffers from certain drawbacks that the researchers 

are still interested in solving. The literature review by Askari 

(2021) stated that the FCM is extremely sensitive to noise, 

outliers, and cluster size. The authors explained that there was no 

specific calculation to filter out the noise and outliers from 

necessary points since all data points equally contribute to the 

estimation of cluster centres which affects the actual structures 

of the point cloud objects.  
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The FCM could be bad in clustering due to the random initial 

cluster centres. Therefore, several modifications have been made 

to the FCM algorithm by combining it with other models, such as 

Gravitational Search Algorithm (GSA) (Yang et al., 2020), Particle 

Swarm Optimization (PSO) algorithm (Siringoringo & Jamaluddin, 

2019), and Artificial Bee Colony algorithm (Alomoush et al., 2021).  

 

As stated before, the FCM is the most well-known method 

among researchers. However, there is a lack of literature that tries 

to generate an optimal number of clusters for fuzzy clustering in 

the point cloud simplification process. Nearly all studies used an 

arbitrary number of clusters that had to be decided by the 

researchers beforehand (Leal et al., 2017).Therefore, this study 

has developed a method to estimate an automatic number of 

clusters by adopting the Score and Minimum Distance of the Point 

Clouds (SMD) technique by He et al. (2019). 

 

3. Methodology 
Figure 1 below illustrates the point simplification algorithm 

used in this study: 

 

Figure 1. Flowchart of the developed point cloud simplification 

algorithm. 

 

3.1 Input Point Cloud Datasets 

This study uses three different datasets for experimental 

verification purposes: (i) box, (ii) cup, and (iii) Stanford bunny 

obtained from the PointCleanNet database. 

 

3.2 Calculation of Geometric Information 

Preserving point cloud features requires the spatial 

coordinate value of the point cloud and the geometric 

information, which are normal vector and point curvature. 

However, Yang et al. (2020) added angle entropy and point cloud 

density as an additional information. 

 

3.2.1 Point Cloud Normal Vector and Curvature Estimation 

The Normal vector is calculated using the Principal 

Component Analysis (PCA). PCA is built by the covariance matrix 

using the neighbourhood information. 

 

Equations (1) and (2) below illustrate the formula used for 

kNN and PCA models for a given point 𝑝(𝑥, 𝑦, 𝑧), respectively.  

 

𝑑 = √(𝑥𝑎 − 𝑥𝑏)
2 + (𝑦𝑎 − 𝑦𝑏)

2 + (𝑧𝑎 − 𝑧𝑏)
2 (1) 

 

𝐶3×3 = ∑(𝑝𝑖 − �̅�)(𝑝𝑖 − �̅�)𝑇
𝑘

𝑖=1

 
(2) 

 

where 𝑘 is the neighbourhood size, 𝑑 is the Euclidean distance 

between point (𝑥𝑎 , 𝑦𝑎, 𝑧𝑎) and (𝑥𝑏 , 𝑦𝑏, 𝑧𝑏) which are the three-

dimensional coordinates of point 𝑎 and point 𝑏, and �̅� is the mean 

value of the point 𝑝. 

 

Then, it is suggested to adjust the normal consistency to 

equation (3) owing to the unpredictability of the point cloud’s 

normal vector direction.  

 

�̅�′ = {
�̅��̅�(𝑙 − 𝑝𝑖) 𝑖𝑓 �̅� ≥ 0

−�̅��̅�(𝑙 − 𝑝𝑖) 𝑖𝑓 �̅� < 0
 (3) 

 

where 𝑦 ⃑⃑⃑   and �̅�′ is the original and adjusted normal vector in 

the form of (ℎ,𝑚, 𝑛), respectively, and 𝑙 is the location of the 

view.  

 

The formula for the curvature 𝜎𝑖  of point 𝑝𝑖 is given as, 

𝜎𝑖 =
𝜏0

𝜏0 + 𝜏1 + 𝜏2
 (4) 

 

where 𝜏0, 𝜏1, 𝑎𝑛𝑑 𝜏2 are the eigenvalues from equation (2) 

that satisfy 𝜏0 ≤ 𝜏1 ≤ 𝜏2. 
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3.2.2 Point Cloud Angle Entropy 

Another method to describe the local geometric 

characteristics of the subject is to estimate the angles between 

the normal vectors of its neighboring points which known as angle 

entropy. According to Xuan et al. (2018), angle entropy can be 

used to decide which point needs to be reserved, and which does 

not. A high value indicates that the point is situated in an area 

where the concave and convex clearly differ, and the removal of 

the point would result in a change to the local geometry. As a 

result, the point is crucial in expressing the specific geometric 

feature in the area and must be kept. Contrarily, a low value 

indicates that the point is in a flat area, where it can be replaced 

by its neighbours and removed. 

 

Thus, angle entropy 𝐸𝑛𝑖 for each point cloud is estimated 

based on its neighbourhood as follows,   

 

𝐸𝑛𝑖

= −
�̅�𝑖

�̅�𝑖 + ∑ �̅�𝑗
𝑘
𝑗=1

log2

�̅�𝑖

�̅�𝑖 + ∑ �̅�𝑗
𝑘
𝑗=1

− ∑
�̅�𝑗

�̅�𝑖 + ∑ �̅�𝑗
𝑘
𝑗=1

𝑘

𝑗=1
log2

�̅�𝑗

�̅�𝑖 + ∑ �̅�𝑗
𝑘
𝑗=1

 

 

 

�̅�𝑖 =
1

𝑘
∑ arccos (

�̅�𝑖 ⋅ �̅�𝑗

|�̅�𝑖||�̅�𝑗|
)

𝑘

𝑗=1
 

(5) 

 

where �̅�𝑖 is the normal vector of 𝑝𝑖, �̅�𝑖  is the angle of 𝑝𝑖, and  

�̅�𝑗  is the angle of point 𝑝𝑖. 

 

3.3 Preservation of Point Cloud Strong Features 

 

Strong features are essential to retain the unique nature of 

the cloud model data. Thus, this study adopts the statistical 

principle together with point cloud curvature as the strong 

features preservation evaluation parameter (Hadi et al., 2021). 

Firstly, estimate the average curvature �̅� of all point clouds and 

standard deviation 𝜎𝑠𝑡𝑑 using equation (6). Then, it is followed by 

a simplification model by Yang et al. (2020), where the curvature 

threshold 𝜎0 will be computed. If 𝜎𝑖 > 𝜎0, point 𝑝𝑖 is classified as 

a strong feature and will be preserved from the clustering 

process. 

 

�̅� =
1

𝑛
∑ 𝜎𝑖

𝑛

𝑖=1
 

 

𝜎𝑠𝑡𝑑 = √
∑ (�̅� − 𝜎𝑖)

2𝑛
𝑖=1

𝑛
 

 

𝜎0 = �̅� + 𝛽 × 𝜎𝑠𝑡𝑑  

(6) 

 

where 𝑛 is the total point cloud, and 𝛽 is a constant from 1 to 5. 

 

 

3.4 Number of Clusters 

This subsection discusses an automatic method for the 

number of clusters. The analysis was based on a conceptual model 

by He et al. (2020) called the Score and Minimum Distance of the 

Centre Point (SMD). This model consists of four steps as below: 

 

STEP 1: Choose the dimension that has the largest 

discreteness. 

 

A dimension with the largest degree of dispersion could 

reflect the actual distribution of the data, which means that the 

overlap in this dimension is more significant. Thus, equation (8) 

was used to compare the level of dispersion in a dimension called 

the discreteness function, and equation (7) was used to normalise 

the data beforehand. Then, a dimension was said to have a 

tremendous discreteness when the discreteness function was the 

lowest among all other dimensions. The chosen dimension was 

sent to the next step to get the density values based on the kernel 

function. 

𝑥′ =
𝑥 − 𝑚𝑖𝑛

𝑚𝑎𝑥 − 𝑚𝑖𝑛
 (7) 

𝐹 = ∑ |𝑥𝑖+1 − 𝑥𝑖|
𝑛−1

𝑖=1
 (8) 

 

Where 𝑥′ is the normalised data, and 𝐹 is the discreteness 

function. 

 

 

STEP 2: Calculation of density using kernel estimation and 

obtained 𝑘𝑚𝑎𝑥. 

 

Triangular Kernel function, Epanechnikov Kernel function, 

Gaussian Kernel function, and Tricube Kernel function are among 

the types of kernel functions used to estimate the density values. 

He et al. (2020) adopted the Gaussian Kernel density function as 

their method so that the density curve would be smooth. 

However, Wang & Kim (2019a) mentioned that the time 

complexity of calculating the local density using the Gaussian 

kernel function was indefinitely long. Moreover, the Gaussian 

kernel function is inefficient for large-scale datasets. Hence, this 

study chose the Cosine kernel function to ensure that the result is 

accurate with the datasets of various shapes and scales.  

 

Once the dimension with the largest discreteness was 

extracted, the density values would be evaluated using equation 

(9). Afterwards, 𝑘𝑚𝑎𝑥 were obtained by choosing the smallest 

value among √𝑛 and the number of extreme values for density 

𝑓(𝑥) =
1

𝑛ℎ
∑𝐾 (

𝑥 − 𝑥𝑖

ℎ
)

𝑛

𝑖=1

 

 

𝐾(𝑢) =
𝜋

4
cos (

𝜋

2
𝑢) 

(9) 
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where 𝑓(𝑥) is the density distribution function, 𝐾 is the 

Cosine Kernel function,  

ℎ = 1.059𝜎𝑛−
1

5  is the window width, and 𝜎 is the variance of the 

random variable.  

 

STEP 3: Determining the candidate’s set of cluster centre 

 

The first step in this process was to sort the data points, 𝑐𝑖  in 

descending order based on their score, as in equation (10).  

 

𝑠𝑐𝑜𝑟𝑒(𝑐𝑖)

= min
𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑐𝑗)>𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑐𝑖),𝑐𝑖,𝑐𝑗∈𝑃

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑐𝑖 , 𝑐𝑗)

⋅ 𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑐𝑖) 

(10) 

 

where 𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑐𝑖) is the density of point 𝑐𝑖 , 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑐𝑖 , 𝑐𝑗) 

is the distance between point 𝑐𝑖  and point 𝑐𝑗 . 

 

Then, the sorted points were cut into the size of the 𝑘𝑚𝑎𝑥 to 

get the candidate's set of centre points. The process continued by 

judging the score change between all candidates by score 

variation. He et al. (2020) defined score variation as the method 

to find the number of clusters when the last great score change 

occurred, decided using Equation (11). A new value of 𝑘𝑚𝑎𝑥 is 

obtained when 𝐺𝑟𝑎𝑑𝑟𝑜𝑝(𝑘) is greater or equal to 2. The centre 

points were said to change significantly at this stage, and all the 

centre points in the same class will be removed.  

 

𝐶𝐺𝑟𝑎𝑑𝑒(𝑘) = 𝐺𝑟𝑎𝑑𝑒(𝑘) − 𝐺𝑟𝑎𝑑𝑒(𝑘 + 1) 

 

𝐴𝑣𝑒𝑟𝐶𝐺𝑟𝑎𝑑𝑒 =
∑ 𝐶𝐺𝑟𝑎𝑑𝑒(𝑘)𝑛−1

𝑖=1

𝑛 − 1
 

 

𝐶𝐺𝑟𝑎𝑑𝑒(𝑘) > 𝐴𝑣𝑒𝑟𝐶𝐺𝑟𝑎𝑑𝑒 

 

𝐺𝑟𝑎𝑑𝑟𝑜𝑝(𝑘) =
𝐶𝐺𝑟𝑎𝑑𝑒(𝑘)

max
𝑘<𝑖<𝐾𝑚𝑎𝑥

𝐶𝐺𝑟𝑎𝑑𝑒(𝑖)
 

 

(11) 

𝐶𝐺𝑟𝑎𝑑𝑒(𝑘) is the score change value, 𝐺𝑟𝑎𝑑𝑒(𝑘) is the sorted 

points based on Equation (10) in descending order, 

𝐴𝑣𝑒𝑟𝐶𝐺𝑟𝑎𝑑𝑒(𝑘) is the average of the top 𝐾𝑚𝑎𝑥 score changes, 

and 𝐺𝑟𝑎𝑑𝑟𝑜𝑝(𝑘) is the degree of the score change. 

 

STEP 4: Generating the final number of clusters. 

 

The last step in estimating the automatic number of clusters 

would be to investigate the change of the minimum distance 

between the central points so that the cluster points are not close 

to each other. He et al. (2020) developed equation (12) to judge 

the minimum distance, and the cluster centre was selected when 

𝐷𝑖𝑠𝑑𝑟𝑜𝑝(𝑐𝑘 , 𝑐𝑘+1) ≥ a,  a ≥ 2. This is because this condition 

portrays that no more small distance between the two centre 

points occurred. Then, the final number of clusters was decided 

by the size of the points before the last great change in the 

minimum distance between the centre points. 

 

𝐷𝑖𝑠𝑑𝑟𝑜𝑝(𝐶𝑘, 𝐶𝑘+1)

=

min
𝑐𝑖∈𝐶𝑘,𝑐𝑗∈𝐶𝑘 𝑎𝑛𝑑 𝑖≠𝑗

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑐𝑖 , 𝑐𝑗)

min
𝑐𝑖∈𝐶𝑘+1,𝑐𝑗∈𝐶𝑘+1 𝑎𝑛𝑑 𝑖≠𝑗

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑐𝑖 , 𝑐𝑗)
 

(12) 

 

3.5 Improved Fuzzy C-Means (IFCM) 

Some alterations need to be done to the established FCM so 

that it can overcome the drawbacks of this algorithm. This study 

modified the cluster centre based on the density estimation 

instead of the random membership matrix. The improved method 

is named Improved Fuzzy C Means (IFCM). The flow of IFCM is as 

follows: 

 

STEP 1: Generate random initialisation of the cluster centre 

𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑐}, together with membership matrix 𝐹 =

[𝑓𝑘𝑖]𝑐×𝑛, that follows the condition of FCM. 

 

𝑓𝑘𝑖 ∈ [0,1], ∑ 𝑓𝑘𝑖 = 1

𝑐

𝑘=1

, 0 < ∑ 𝑓𝑘𝑖

𝑐

𝑘=1

< 𝑛 

∀𝑖 = 1,2, … , 𝑛,   ∀𝑘 = 1,2,… , 𝑐 

 

(13) 

Where 𝑐 is the total number of clusters that was computed 

previously. 

 

STEP 2: Update the membership matrix using the cluster 

centre generated in equation (14). Zhang et al. (2020) suggested 

using the fuzzy index, 𝑚 ≥ 1. However, after a further 

investigation, a trend was noticed between the fuzzy index and 

cluster centre, by which the overlapping among cluster centre 

occurred significantly when the fuzzy index is increasing. For that 

reason, this study used a fixed value for the fuzzy index, which 

was 𝑚 = 1.15 to avoid all cluster centres falling into the centre of 

the models. 

𝑓𝑖𝑗 =
1

∑ (
𝑑𝑖𝑗

𝑑𝑘𝑗
)

2
𝑚−1

𝑐
𝑘=1

 

 

(14) 

Where 𝑑𝑖𝑗 = ‖𝑝𝑖 − 𝑐𝑗‖, and 𝑑𝑘𝑗 = ‖𝑝𝑘 − 𝑐𝑗‖. 

 

STEP 3: Determine if the calculation procedure satisfies the 

threshold requirements. The computation procedure is complete, 

and the clustering result is computed when the number of 

iterations reaches the total number of iterations. Return to Step 

2 if the termination condition is not satisfied. 

 

3.6 Output Simplified Data 

The point cloud data in different regions were simplified to 

complete the simplification process of point cloud based on the 

angle entropy in each region. Then, all the retained points from 

the simplification process will be combined with strong features 

preserved earlier to be the simplified dataset. 
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4. Results and Discussions 
This section discusses the result computed based on an 

algorithm in the previous section. Four main characteristics were 

analysed: (i) number of clusters, (ii) size of simplified data, (iii) 

error evaluation, and (iv) processing time. 

 

4.1 Analysis of the Preservation of the Strong Features 

Based on the literature review, some researchers did not 

consider preservation of strong point clouds as one of the 

processes in their algorithm. Therefore, this subsection 

investigates the effect of preserving the critical points for each 

model based on the total simplified data, error evaluation, and 

figure comparison. The algorithm for this inspection was 

performed on the fixed number of clusters set to 10 and applied 

the established Fuzzy C-Means (FCM) clustering algorithm. The 

original data sets for all three models consist of 100,000 points. 

However, due to the processor capacity, 100,000 will be reduced 

to 5,000 points. The summary for this analysis is shown in Table 

1. 

 

Table 1.  Analysis of Data Simplification with Strong Point Cloud 

Preservation. 

Reservation 

of Strong 

Feature? 

Number 

of Strong 

Points 

Number 

of 

Clusters 

Total 

Simplified 

Data 

Error Evaluation 

Maximum Mean 

BOX 

YES 711 10 2832 13.741 2.8378 

NO - 10 2469 13.7821 3.3582 

STANFORD BUNNY 

YES 808 10 2659 3.9483 0.6471 

NO - 10 2216 3.9526 0.7713 

CUP 

YES 725 10 3361 1.811 0.4867 

NO - 10 3111 1.811 0.5698 

 

This result shows that the features preservation process gives 

the total number of final data somewhat higher than the 

unpreserved algorithm. Another aspect that stands out in the 

table is the error evaluation result. As for the maximum error, 

there is no comparable difference between the two algorithms. 

Regardless of that, it can be said that the algorithm with 

preservation of unique features effectively reduced the error for 

box and Stanford bunny. Mean errors show a significant 

contradiction for all three models. Thus, it is guaranteed that the 

features preservation step can minimise the error occurring in the 

point cloud simplification algorithm. 

 

The following figures illustrate the distribution of the 

simplified data with the preserved points in red. Other colours in 

the figures show different clusters. 

 

  

(a) Box (b) Stanford bunny 

 

(c) Cup 

Figure 2. Analysis of strong features preservation on three 

different datasets. 

 

Figure 2 shows the simplified models with preserved features 

in red colour. For the box, obviously, the strong elements are the 

edges. Unlike the box, the Stanford bunny has more round edges, 

and the method preserves points mainly at the bunny's face and 

legs. Similarly, the cup's strong features are located at its bottom 

part. 

 

4.2 Analysis of the Developed Algorithm 

This subsection discusses the outcome of the fully developed 

algorithm. The first modification of this study introduced a 

method to generate an automatic number of clusters. This 

modification was established by embedding the Score and 

Minimum Distance of the Centre Point (SMD) to rate the point 

clouds. The original Kernel Density Function by Wang and Kim 

(2019a) that used Gaussian Kernel Function was changed to the 

Cosine Kernel Function to increase the accuracy. At this point, the 

technique was named SMD-FCM because the SMD method is only 

used to get the number of clusters, and the cluster centres still 

depends on the random membership matrix. 

 

The second modification is the cluster centre that was refined 

based on the score of the point clouds instead of the random 

membership matrix. This new technique is called the Improved 

Fuzzy C-Means (IFCM). The new algorithm with kernel and 

membership matrix modification is SMD(C)-IFCM. Table 2 shows 

the differences between these three algorithms. 
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Table 2.  Differences among SMD-FCM, SMD-IFCM, SMD(C)-

IFCM. 

 SMD-FCM SMD-IFCM 
SMD(C)-IFCM (developed 

algorithm) 

Kernel 

Density 

Function 

Gaussian 

Kernel 

Function 

Gaussian 

Kernel 

Function 

Cosine Kernel Function 

Cluster 

Centre 

Based on 

membership 

matrix 

Based on score 

of the point 

clouds 

Based on score of the 

point clouds 

 

The discussion for these three algorithms focuses on the 

number of cluster centres, total simplified data, error evaluation, 

and processing time in computing the algorithm. The results of 

the developed techniques are reported in Table 3. 

 

 

 

 

Table 3.  Results of Simplified Algorithm for SMD_FCM, SMD-IFCM, and SMD(C)-IFCM. 

 Number of 

Strong Points 

Number of 

Clusters 

Total Simplified 

Data 

Error Evaluation Time Taken (s) 

Maximum Mean  

BOX 

SMD-FCM 711 13 2860 (57.2%) 13.7821 3.9170 1756.044 

SMD-IFCM 711 13 2866 (57.32%) 13.7821 3.9246 1840.031 

SMD(C)-IFCM 711 14 2831 (56.62%) 13.7821 3.8726 1606.853 

STANFORD BUNNY 

SMD-FCM 808 17 2666 (53.32%) 3.9522 0.9210 802.928 

SMD-IFCM 808 17 
2649 

(52.98%) 
3.9526 0.9138 1253.575 

SMD(C)-IFCM 808 10 2678 (53.56%) 3.9526 0.9247 775.776 

CUP 

SMD-FCM 725 5 3201 (64.01%) 1.811 0.5834 682.029 

SMD-IFCM 725 5 
3250 

(65%) 
1.811 0.5931 795.361 

SMD(C)-IFCM 725 8 3174 (63.48%) 1.811 0.5783 717.929 

The result shows that a change in Kernel Function affects the 

simplified result in which the total number of clusters can be 

different. The datasets are prone to be reduced more in the 

model with more clusters. For box and cup, the error evaluation 

between SMD-FCM and SMD-IFCM indicates that the Cosine 

Kernel Function produces a better result when applied to the 

IFCM technique. However, the SMD(C)-IFCM performed 

inadequately for the Stanford bunny, and it may be related to 

other parameters involved in the whole process, such as the kNN 

value. The overall performance showed that the SMD(C)-IFCM 

scored six (6) out of nine (9) measurements, where the SMD-FCM 

and SMD-IFCM scored one (1) and two (2) respectively. Note that 

the maximum error was not considered in the measurement since 

it showed an insignificant difference between the methods. 
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Figures 3 to 5 display the simplified data and the cluster 

centres accordingly. 

 

  
(a) SMD-FCM 

  
(b) SMD-IFCM 

  
(c) SMD(C)-IFCM 

Figure 3. Analysis of simplified data and cluster centre for the 

box using three different methods. 

 

  
(a) SMD-FCM 

  
(b) SMD-IFCM 

  
(c) SMD(C)-IFCM 

Figure 4. Analysis of simplified data and cluster centre for the 

Stanford bunny. 
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(a) SMD-FCM 

  
(b) SMD-IFCM 

  
(c) SMD(C)-IFCM 

Figure 5. Analysis of simplified data and cluster centre for the 

cup. 

 

In Figures 3 to 5, (a) is the resulted datasets and cluster centre 

using SMD-FCM, (b) is the resulted point clouds and cluster centre 

using SMD-IFCM, and (c) is the simplified model and cluster centre 

using the new model developed in this study which is the SMD(C)-

IFCM. For SMD-FCM, the cluster centres for all datasets have 

gravitated to the model’s centre, which shows the drawback of 

FCM. Meanwhile, for the SMD-IFCM, the distribution of cluster 

centres improved and got better with the SMD(C)-IFCM. 

 

5. Conclusion 

This study has developed the point cloud simplification 

algorithm named SMD(C)-IFCM with features preservation. The 

main characteristic of SMD(C)-IFCM is that it generates an 

automatic number of clusters according to the Cosine Kernel 

Function as the density estimator. Furthermore, the cluster 

centre for this algorithm is based on the score of the point clouds 

instead of a random membership matrix.  

 

This study was carried out by analysing the results of the 

developed algorithm with the two other algorithms: (i) SMD-FCM, 

and (ii) SMD-IFCM. The analysis shows that the number of clusters 

mainly influences the total points after the simplification process. 

It can be observed that more data will be removed with a larger 

number of clusters. The results show that SMD-FCM had the 

weakest performance with one (1) score. This was due to the 

cluster centre in the methods of FCM being unstable and falling 

into the local optima. SMD-IFCM showed a better performance 

with a score of two (2). SMD(C)-IFCM had the best performance 

with a score of six (6). In this method, the cluster centres were 

distributed fairly. Furthermore, the number of cluster centres 

were automatically calculated, and the significant features were 

preserved before the simplification.  

 

For improvements, future studies should focus on kNN as this 

parameter has a huge impact on the preservation process. 
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