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DIFFERENTIAL EQUATIONS VIA DIFFERENT ORTHOGONAL POLYNOMIAL WAVELETS 
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Abstract: We propose a wavelet approach on different orthogonal polynomials for solving linear and nonlinear pantograph equations 
with stretch kind. The pantograph differential equation is a unique proportional delay functional differential equation class. It has been 
used to deal with numerous physics, mathematics, and engineering applications, such as quantum mechanics, control systems, 
electrodynamics, and number theory. This scheme is based on constructing the operational matrix for integration via different wavelets 
with their collocation nodes. This study aims to examine the numerical dynamics of the pantograph equation under stretch kind through 
different orthogonal polynomial wavelets. Illustrative examples are presented to highlight the flexibility of this scheme, and comparisons 
are made between the mentioned scheme and other existing schemes using tables and graphs. These numerical results correctly predict 
the applicability and effectiveness of the mentioned scheme. 
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1. Introduction 

 

In variant mathematical modeling, delay differential 
equations (DEs) are key in solving various problems. Moreover, 
delay DEs are also used extensively in a distinct range of real-
world situations such as economy, physiological and 
pharmaceutical kinetics, population dynamics, infectious 
diseases, chemical kinetics, epidemiology, ship navigational 
control, hydraulic network, etc. (Fox, 1971; Driver, 1977; Baker et 
al., 1995). Pantograph equation is a unique and special time delay 
DE that arises in several branches of applied and pure 
mathematics like number theory, quantum mechanics, dynamic 
systems, electrodynamics, control system, probability, and many 
more (Drfel and Iserles, 1997; Saadatmandi and Dehghan, 2009; 
Yusufoglu, 2010). In particular, Ockendon and Tayler (1971) and 
Tayler (1986) formulated this equation to describe how electricity 
is gathered through the pantograph of electrical locomotive. 
Figure 1 shows the pantograph model. 

 
Figure 1. Pantograph Model (Ockendon and Tayler, 1971) 

 
In this manuscript, we handle pantograph differential 

equation of stretch kind (PDESK) of the following form: 
 
𝑑

𝑑𝑡
𝑦(𝑡) = g(𝑦(𝜆𝑡),  𝑦(𝑡),  𝑡),     0 <  𝜆 ∈ ℝ < 1,     𝑡 ∈ [0,1], 

with the condition 
𝑦(0)    =    𝑟0, 

where 𝑟0 is the real constant, and 𝜆 is a stretched argument. 
The given problem is an initial value problem. In general form, 
we can write the above problem as 

 

𝐺 (
𝑑

𝑑𝑡
𝑦(𝑡),  𝑦(𝜆𝑡), 𝑦(𝑡), 𝑡) = 0,                            (1) 

 
with the condition 

 
𝑦(0)    =    𝑟0 ,               (2) 
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Various numerical approaches are based on existing 
orthogonal functions to solve the pantograph DEs. An overview of 
these approaches can be analyzed in the following studies: Sezer 
and Dascioglu (2007), Alomari et al. (2009), Yalcinbas et al. (2011), 
Sedaghat et al. (2012), Anakira et al. (2013), Tohidi et al. (2013), 
Yalcinbas et al. (2013), Bahsi and Cevik (2015), Jayadi et al. (2016), 
Yang (2018), Wang et al. (2019), Jafari et al. (2021), and Asma et 
al. (2022). In this study, we are interested in solving the PDESK 
defined in Eqs. (1-2) using wavelets based on different orthogonal 
functions.  

In recent years, wavelets have become a growing and new 
area in physics, engineering, and mathematics. Wavelet analysis 
is a robust mathematical concept broadly used in image 
processing, signal processing, quantum field theory, numerical 
analysis, and several others (Daubechies, 1988; Mallat, 2018). 
Today, most physics models are analyzed through wavelet 
approaches. Due to the better precision of wavelets over other 
techniques, many researchers in different fields are interested in 
wavelets-based approaches (Rayal and Verma, 2020a; Rayal and 
Verma, 2020b; Rayal and Verma, 2020c; Rayal and Verma, 2022; 
Rayal et al., 2022; Rayal, 2023a; Rayal et al., 2023b). The most 
popular related techniques are the Legendre wavelets method 
(Hafshejani et al., 2011), Laguerre wavelets method (Shiralashetti 
et al., 2016), Hermite wavelets scheme (Saeed and Rehman, 

2014), Bernoulli wavelets scheme (Rahimkhani et al., 2016), 
Gegenbauer wavelets method (Muhammad et al., 2017), 
Mamadu-Njoseh wavelets scheme (Rayal et al., 202, and Muntz 
wavelets scheme (Rayal, 2023d). 

This study aims to compute the continuous approximate 
solutions of the PDESK defined in Eq. (1) using different 
orthogonal polynomial wavelets. An approximation scheme is 
introduced based on different orthogonal polynomial wavelets 
with integral operational matrix (IOM) and collocation grids to 
solve PDESK. The scheme converts the problems into 
simultaneous algebraic equations by expressing an unknown 
function y(t) in a truncated wavelet series. The wavelet 
characteristics, collocation technique, and integral operational 
matrix are utilized to evaluate y(t) in the given problem. 

This manuscript is framed as follows: Section 2 introduces 
different orthogonal polynomial wavelets. Section 3 describes the 
function approximation through wavelets series. Section 4 
explains the IOM for different wavelets. Section 5 proposes an 
approximate scheme for solving the problem. Section 6 estimates 
the errors to check the accuracy of the mentioned scheme. 
Section 7 contains examples of predicting the efficiency and 
precision of the proposed technique. Section 8 summarizes this 
study. 
 

 

2. Orthogonal Polynomial Wavelets 

This section defines the wavelets based on different orthogonal polynomials. 

Muntz Wavelets 

The definition of Muntz wavelets (MWs) on [0,1) for 𝛾 ∈ (0,1) is as follows (Bahmanpour, 2018): 

𝜓𝑛,𝑚(𝑡) = {√
1

2
+ 𝑚𝛾 2

𝑘
2𝑃𝑚(2𝑘−1𝑡 − (𝑛 − 1), 𝛾), 

𝑛 − 1

2𝑘−1 ≤ 𝑡 <
𝑛

2𝑘−1

  0,                   𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

, 

where = 0,1,2,3, . . . , 𝑀 − 1, 𝑛 = 1,2,3, . . . , 2𝑘−1, 𝑘, 𝑀 are natural numbers. The term √
1

2
+ 𝑚𝛾 is employed for normality and 

𝑃𝑚(𝑡) represents the Muntz functions of degree 𝑚 that are orthogonal, corresponding to the unit weighted function 𝑤(𝑡) on 
[0,1] and is represented in the following form:  

𝑃𝑚(𝑡, 𝛾) = ∑ 𝑐𝑚,𝑘

𝑚

𝑘=0

𝑡𝛾𝑘 ,  

where 

𝑐𝑚,𝑘 =
(−1)𝑚−𝑘

𝛾𝑚𝑘! (𝑚 − 𝑘)!
∏(

𝑚−1

𝑖=0

(𝑘 + 𝑖)𝛾 + 1). 

The MWs set is orthogonal under the weighted function, 𝑤𝑛(𝑡) = 𝑤(2𝑘−1𝑡 − 𝑛 + 1). 

Chebyshev Wavelets of The First Kind 

The first kind of Chebyshev wavelets (CWs) have the arguments 𝜓(𝑛, 𝑚, 𝑘, 𝑡), in which 𝑛 = 1,2,3, . . . , 2𝑘, 𝑚 = 0,1,2, . . . , 𝑀 − 1 is the order 
for first Chebyshev functions, 𝑘 ∈ ℕ and 𝑡 represents the normalized time. 

The definition of the CWs on [0,1) is provided as (Tavassoli, 2009): 
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𝜓𝑛,𝑚(𝑡) = {

𝛼𝑚

√𝜋
 2

𝑘
2𝑇𝑚(2𝑘+1𝑡 − (2𝑛 − 1)),       

𝑛 − 1

2𝑘 ≤ 𝑡 <
𝑛

2𝑘 ,

  0,             𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

, 

where 

𝛼𝑚 = {√2        𝑚 = 0         
2            𝑚 = 1,2,3, . . .   .

  

Here, coefficient 𝛼𝑚/√𝜋 is employed for orthonormality and 𝑇𝑚(𝑡) is the first kind of Chebyshev function of degree 𝑚 that is orthogonal 

under the weighted function 𝑤(𝑡) = 1/√1 − 𝑡2 on [−1,1] and has the following iterative relation: 

𝑇0(𝑡) = 1, 

𝑇1(𝑡) = 𝑡, 

𝑇𝑚+1(𝑡) = 2𝑡 𝑇𝑚(𝑡) − 𝑇𝑚−1(𝑡),           𝑚 = 1,2, . . . . 

The set of CWs is orthogonal under the weighted function, 𝑤𝑛(𝑡) = 𝑤(2𝑘+1𝑡 − 2𝑛 + 1). 

 

Chebyshev Wavelets of the Second Kind 

The second kind of Chebyshev wavelets (SCWs) have the arguments 𝜓(𝑛, 𝑚, 𝑘, 𝑡) in which 𝑛 = 1,2,3, . . . , 2𝑘−1, 𝑚 = 0,1,2,3, . . . , 𝑀 − 1 is the 
order for the second Chebyshev functions, 𝑘 ∈ ℕ and 𝑡 represents the normalized time. 

The definition of SCWs on [0,1) is provided as (Zhu and Wang, 2013): 

𝜓𝑛,𝑚(𝑡) = {√
2

𝜋
 2

𝑘
2𝑈𝑚(2𝑘𝑡 − 2𝑛 + 1),      

𝑛 − 1

2𝑘−1 ≤ 𝑡 <
𝑛

2𝑘−1 ,

  0,             𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

. 

Here, the term √2/𝜋 is employed for normality and 𝑈𝑚(𝑡) is the second kind of Chebyshev function of degree 𝑚 that is orthogonal under 

the weighted function 𝑤(𝑡) = √1 − 𝑡2 on [−1,1] and has the following iterative relation:  

𝑈0(𝑡) = 1, 

𝑈1(𝑡) = 2𝑡, 

𝑈𝑚+1(𝑡) = 2𝑡 𝑈𝑚(𝑡) − 𝑈𝑚−1(𝑡),           𝑚 = 1,2,3, . . . . 

The set of SCWs is orthogonal under the weighted function. 𝑤𝑛(𝑡) = 𝑤(2𝑘𝑡 − 2𝑛 + 1). 

 

Chebyshev Wavelets of the Third Kind 

The third kind of Chebyshev wavelets (TCWs) have the arguments 𝜓(𝑛, 𝑚, 𝑘, 𝑡) in which 𝑛 = 1,2,3, . . . , 2𝑘−1, 𝑚 = 0,1,2,3, . . . , 𝑀 − 1 is the 
order for the third kind Chebyshev functions, 𝑘 ∈ ℕ and 𝑡 represents the normalized time. 

The definition of TCWs on [0,1) is provided as (Polat, 2019): 

𝜓𝑛,𝑚(𝑡) = {

1

√𝜋
 2

𝑘
2𝑉𝑚(2𝑘𝑡 − 2𝑛 + 1),      

𝑛 − 1

2𝑘−1 ≤ 𝑡 <
𝑛

2𝑘−1 ,

  0,            𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 

Here, the coefficient √1/𝜋 is used for normality and 𝑉𝑚(𝑡) is the third Chebyshev function of degree 𝑚 that is orthogonal under the weighted 

function 𝑤(𝑡) =
√1+𝑡

√1−𝑡
 on [−1,1] and has the following iterative relation:  

𝑉0(𝑡) = 1, 

𝑉1(𝑡) = 2𝑡 − 1, 

𝑉𝑚+1(𝑡) = 2𝑡 𝑉𝑚(𝑡) − 𝑉𝑚−1(𝑡),           𝑚 = 1,2,3, . . . . 
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The set of TCWs is orthogonal under the weighted function, 𝑤𝑛(𝑡) = 𝑤(2𝑘𝑡 − 2𝑛 + 1). 

 

Chebyshev Wavelets of the Fourth Kind 

The fourth kind of Chebyshev wavelets (FCWs) have the arguments 𝜓(𝑛, 𝑚, 𝑘, 𝑡) in which 𝑛 = 1,2,3, . . . , 2𝑘−1, 𝑚 = 0,1,2,3, . . . , 𝑀 − 1 is the 
order for the fourth kind Chebyshev functions, 𝑘 ∈ ℕ and 𝑡 represents the normalized time. 

The definition of FCWs on [0,1) is as follows (Azodi and Yaghouti, 2018): 

𝜓𝑛,𝑚(𝑡) = {

1

√𝜋
 2

𝑘
2𝑊𝑚(2𝑘𝑡 − (2𝑛 − 1)),      

𝑛 − 1

2𝑘−1 ≤ 𝑡 <
𝑛

2𝑘−1 ,

  0,             𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 

Here, the coefficient 1/√𝜋 is used for normality and 𝑊𝑚(𝑡) is the fourth Chebyshev function of degree 𝑚 that is orthogonal under the 

weighted function 𝑤(𝑡) = √
1−𝑡

1+𝑡
 on [−1,1] and has the following iterative relation: 

𝑊0(𝑡) = 1, 

𝑊1(𝑡) = 2𝑡 + 1, 

𝑊𝑚+1(𝑡) = 2𝑡 𝑊𝑚(𝑡) − 𝑊𝑚−1(𝑡),           𝑚 = 1,2,3, . . . . 

The set of CWs is orthogonal under the weighted function, 𝑤𝑛(𝑡) = 𝑤(2𝑘𝑡 − 2𝑛 + 1). 

Now, the wavelet function approximation is described in the successive sections using the considered wavelet basis functions. 

 

3. Function Approximation 

A function ℎ(𝑡) on [0,1) can be approximated via considered wavelets as 

ℎ(𝑡) ≈ ∑ ∑ 𝑒𝑛,𝑚

∞

𝑚=0

∞

𝑛=1

𝜓𝑛, 𝑚(𝑡), (3) 

where 𝑒𝑛,𝑚 are computed by 

𝑒𝑛,𝑚 = ⟨ℎ(𝑡), 𝜓𝑛, 𝑚⟩
𝑤𝑛(𝑡)

=   ∫ ℎ
1

0

(𝑡)𝜓𝑛, 𝑚(𝑡)𝑤𝑛(𝑡)𝑑𝑡 

Here, the notation ⟨. , . ⟩ describes the inner product in 𝐿2[0,1] with the weighted function 𝑤𝑛(𝑡). 
The truncated form of Eq. (3) is rewritten as: 

ℎ(𝑡) ≈ ∑ ∑ 𝑒𝑛,𝑚

𝑀−1

𝑚=0

2𝑘−1

𝑛=1

𝜓𝑛 ,𝑚(𝑡) = 𝐸𝑇𝛹(𝑡) = 𝛹𝑇(𝑡) 𝐸,    (4) 

where 𝐸 and 𝛹(𝑡) are provided by 

𝐸 =  [𝑒1,0, . . . , 𝑒1,(𝑀−1), 𝑒2,0, . . . , 𝑒2,(𝑀−1), . . . , 𝑒2𝑘−1,0, . . . , 𝑒2𝑘−1,(𝑀−1)]
𝑇

=  [𝑒1, 𝑒2, . . . , 𝑒�̂�]𝑇 ,
 (5) 

𝛹(𝑡) =   [
𝜓1,0(𝑡), … , 𝜓1,(𝑀−1)(𝑡), 𝜓2,0(𝑡), … , 𝜓2,(𝑀−1)(𝑡), … ,

𝜓2𝑘−1,0(𝑡), . . . , 𝜓2𝑘−1,(𝑀−1)(𝑡)
]

𝑇

=   [𝜓1, 𝜓2, . . . , 𝜓�̂�]𝑇 .

 (6) 

Here, �̂� = 2𝑘−1𝑀 denotes the total considered wavelets basis, but in the case of the first kind of Chebyshev wavelets �̂� = 2𝑘𝑀. 
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4. Integral Operational Matrix for Orthogonal Polynomial Wavelets 

    This section provides the IOM 𝑃�̂�×�̂� for different wavelets that play an important part in the PDESK solution. This operational matrix is 
employed to transform the given model to the algebraic system of equations in terms of wavelet coefficient. By applying the IOM, a large 
unknown coefficient vector does not occur when computing the numerical approximation of a linear and nonlinear PDESK class. 
Consequently, the calculations are made simple, resulting in better solution accuracy. In general, 

∫ 𝛹
𝑡

0

(𝑡) 𝑑𝑡 ≈   𝑃�̂�×�̂�𝛹(𝑡), (7) 

where 𝛹(𝑡) is provided in Eq. (6) and 𝑃�̂�×�̂� is the IOM determined by 

𝑃�̂�×�̂� =   ⟨𝑔�̂�×1(𝑡), 𝛹�̂�×1
𝑇 (𝑡)⟩

𝑤𝑛(𝑡)
,     

where 

𝑔�̂�×1(𝑡) = ∫ 𝛹
𝑡

0

(𝑡)𝑑𝑡 

and the notation ⟨. , . ⟩ represents the inner product in 𝐿2[0,1] under the weighted function 𝑤𝑛(𝑡). 

Using Eq. (7), construct the following IOM for different wavelets: 

(a) The IOM of the Muntz wavelets (𝛾 = 0.5, 𝑘 = 1, 𝑀 = 8): 

 

( )8 8 MWs

0 0 0 0 0

0 0 0 0 0
7 3

5
0 0 0 0

7 3

2
0 0 0 0

33 3
P

5 10
0 0 0 0

286

2 10 14 2
0 0 0 0

33 3 55 3

1 2 1

2 5 10 3

2 2 2

5 35

1 2 2

10 3 15 3 42 3

2 2

14 2 14
0 0 0 0 0

286 22155 3

2 2 14
0 0 0 0 0 0

2 5

35 7715 3

2 5 35

7742 3 39 3

39 3 65 3

35

65 213 2



−

 
 
 
 
 −
 
 
− −


 − −


= 


− −



− −





 − −
 

−

;
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(b) The IOM of the first kind of Chebyshev wavelets (𝑘 = 0, 𝑀 = 8): 

( )8 8 CWs

1 1
0

2 2

1 1
0

4 2

1 1 1
0

123

1 1 1
0

8 168

1 1 1
0 0

12 2015

1 1 1
0 0

16 2424

1 1 1
0

20 2835

1 1
0

0 0 0 0 0
2

0 0 0 0 0
8

0 0 0 0
42

0 0 0 0
2

P ;

0 0 0
2

0 0 0
2

0 0 0 0
2

0 0
24

0
48

0 0
2



 
 
 
 
− 

 
 − −
 
 
 −
 

=  
 −
 
 
 −
 
 
 
 
 
 −
 

− −



−

 

 
(c) The IOM of second kind Chebyshev wavelets (𝑘 = 1, 𝑀 = 8): 

( )8 8 SCWs

0 0 0 0 0
4

3
0 0 0 0 0

8 8

0 0 0 0
6 12

0 0 0 0
16

P ;

0 0 0
20

0 0 0
12 2

1 1
0

2

1
0

1 1 1
0

12

1 1 1
0

8 16

1 1 1
0 0

10 20

1 1 1
0 0

24

1 1 1
0

28 28

1

4

0 0 0 0
14

0 0 0 0 0
16

1

3
0

2



 
 
 
 −
 
 
 −
 

−


 −
 =
 

− 
 
 

− 
 
 
 
 
 −−
 

−



−
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(d) The IOM of third kind Chebyshev wavelets (𝑘 = 1, 𝑀 = 8): 

( )8 8 TCWs

0 0 0 0 0
4

1 0 0 0 0
8 8

5
0 0 0

12 8 24

7
0 0 0

24 12 48
P ;

9
0 0

16 80

0 0
60 20

3 1
0

4

1 1
0

1 1 1
0

12

1 1 1
0

16

1 1 1
0 0

10 20

11 1 1 1
0 0

24

13 1 1 1

120

0 0 0
84 168

0 0 0 0
112 28 22

0
24 28

15 1 1

4
0



 
 
 
 −
 
 
 −
 
 
 −
 =
 

− 
 
 

− 
 
 
 
 
 −
  

−

−

− −

−

− −

− −

− −

 

 

(e) The IOM of fourth kind Chebyshev wavelets (𝑘 = 1, 𝑀 = 8): 

( )8 8 FCWs

1
0

4

1 1
0

1 1 1
0

12

1 1 1
0

16

1 1 1
0 0

40 20

1 1 1
0 0

24

1 1

1
0 0 0 0 0

4

0 0 0 0 0
8 8

1
0 0 0

12 8 24

1
0 0 0

24 12 48
P ;

1
0 0

16 80

1
0 0

60 20 120

0 0 0
84 1

1 1
0

24 28

1

68

0 0 0 0
112 28 22

1 1
0

4



 
 
 
 
 
 
 −
 
 
 −
 =
 

− 
 
 

− 
 
 
 
 
 −
  

−

−

− −

 

The next section explores the numerical PDESK solutions. 
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5. Formulation of the Method 

This section presents an approximate method based on orthogonal polynomial wavelets. The procedure of applying the method to a given 
problem is as follows. 

Take the model equation from Eqs. (1-2) and expand the function,  
𝑑

𝑑𝑡
𝑦(𝑡) via truncated series of wavelets over the interval [0,1) as 

𝑑

𝑑𝑡
𝑦(𝑡) ≈ 𝐸𝑇𝛹(𝑡), (8) 

where 𝐸 and 𝛹(𝑡) are provided in Eqs. (5) and (6) respectively. By integrating Eq. (8) from 0 to 𝑡, we get 

𝑦(𝑡) ≈ 𝐸𝑇 ∫ 𝛹
𝑡

0

(𝑡) 𝑑𝑡 + 𝑦(0) =    𝐸𝑇𝑃�̂�×�̂�𝛹(𝑡), 

where 𝑃�̂�×�̂� is the IOM of wavelets given in Eq. (7). After simplification, we obtain 

𝑦(𝑡) ≈   𝐸𝑇𝑃�̂�×�̂�𝛹(𝑡) + 𝑦(0)

=   𝐸𝑇𝑃�̂�×�̂�𝛹(𝑡) + 𝑟0

=   𝐸𝑇𝑃�̂�×�̂�𝛹(𝑡) + 𝑑𝑇𝛹(𝑡) 

=   (𝐸𝑇𝑃�̂�×�̂� + 𝑑𝑇)𝛹(𝑡) = 𝑦�̂�(𝑡),

 (9) 

where vector 𝑑 is chosen as: 

𝑑𝑇𝛹(𝑡) = 𝑟0. (10) 

By using an approximation form of function 𝑦(𝑡) given in Eq. (9), we obtain 𝑦(𝜆𝑡) as 

𝑦(𝜆𝑡) ≈ (𝐸𝑇𝑃�̂�×�̂� + 𝑑𝑇)𝛹(𝜆𝑡), (11) 

where 𝛹(𝜆𝑡) is a stretched wavelets function. Using Eqs. (8-10) into Eq. (1), we obtain: 

𝐺(𝐸𝑇𝛹(𝑡),  (𝐸𝑇𝑃�̂�×�̂� + 𝑑𝑇)𝛹(𝜆𝑡),  (𝐸𝑇𝑃�̂�×�̂� + 𝑑𝑇)𝛹(𝑡),  𝑡) = 0. (12) 

Now, collocating the obtained system at the appropriate grids 𝑡𝑖: 

𝐺(𝐸𝑇𝛹(𝑡𝑖),  (𝐸𝑇𝑃�̂�×�̂� + 𝑑𝑇)𝛹(𝜆𝑡𝑖),  (𝐸𝑇𝑃�̂�×�̂� + 𝑑𝑇)𝛹(𝑡𝑖),  𝑡𝑖) = 0, (13) 

where 

𝑡𝑖 =
2𝑖 − 1

2𝑘𝑀
,  𝑖 = 1,2, . . . , 2𝑘−1𝑀. (14) 

The resultant algebraic set in Eq. (13) can be evaluated properly for wavelet coefficients 𝐸. Finally, the solution 𝑦�̂�(𝑡) of the given problem 
is achieved through the inclusion of estimated coefficient 𝐸 into Eq. (9) as 𝑦�̂�(𝑡) = (𝐸𝑇𝑃�̂�×�̂� + 𝑑𝑇)𝛹(𝑡). 

Figure 2 displays the flowchart for implementing the constructed scheme. 
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Figure 2. Flowchart for implementing the constructed scheme 

6. Error Estimation of Solution 

     This section provides the convergence formulae to analyze the errors in the computation results. To investigate the accuracy of the 
proposed method, we define the error formulae as: 
 
(a) Let 𝑦�̂�(𝑡) be the estimate solution to 𝑦(𝑡) of Eqs. (1-2). Then 𝐸𝐴𝑏𝑠(𝑡) at 𝑡 ∈ [0,1] is calculated as 

𝐸𝐴𝑏𝑠(𝑡) =    |𝑦(𝑡) − 𝑦�̂�(𝑡)|, 

where 𝑦(𝑡) is the analytical solution of the considered model. 

 
(b) 𝐿∞, the maximum absolute error is computed by 

𝐿∞ =   𝑚𝑎𝑥
𝑡∈[0,1]

|𝐸𝐴𝑏𝑠(𝑡)| 

(c) The 𝐿2 norm consecutive error (𝒞. ℰ) is computed by 

𝒞. ℰ =   ||𝑦�̂�+1(𝑡) − 𝑦�̂�(𝑡)||2,  𝑡 ∈ [0,1]. (15) 

(d) The reliability of the results and accuracy of the scheme can be checked through residual error function in the absence of an exact solution 
of the proposed model as: 

𝐸�̂�(𝑡) = |
𝑑

𝑑𝑡
𝑦�̂�(𝑡) − g(𝑦�̂�(𝜆𝑡),  𝑦�̂�(𝑡),  𝑡)| ,    𝑡 ∈ [0,1] 

If 𝐸�̂�(𝑡) → 0 for �̂�, then the error decreases. 
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7. Method Implementation 

    This section implements the constructed scheme with MWs, CWs, SCWs, TCWs, and FCWs to solve PDESK, and the approximated outputs 
obtained are compared with the corresponding available analytical solution. The 𝐿2 norm consecutive errors and absolute errors 
demonstrate the accuracy of the constructed scheme. The proposed method is easy to implement, but the computational cost may be 
complex. All numerical outputs are computed using Mathematica.  

 

Example 1. 

Consider the PDESK (Bellen & Zennaro, 2003) as: 

𝑑

𝑑𝑡
𝑦(𝑡) = 𝑦(0.5 𝑡),  0 ≤ 𝑡 ≤ 1, 

with the condition 

𝑦(0) = 1 

The closed-form solution of the considered example is provided (Bellen & Zennaro, 2003): 

𝑦(𝑡) = ∑
1

𝑗 !

∞

𝑗=0

(2)
𝑗(1−𝑗)

2 𝑡𝑗 . 

We solve the above example for �̂� = 8 using the scheme introduced in Section 5. The wavelet coefficient vector of 𝑦(𝑡) can be determined 
as: 

𝑦MWs(𝑡) =  1.0 + 0.0000109285√𝑡 + 0.99986 𝑡 + 0.000833015 𝑡1.5 + 0.24731𝑡2

 +0.0049748 𝑡2.5 + 0.0155824 𝑡3 + 0.00292117 𝑡3.5.
 

𝑦CWs(𝑡) = 1.0 +  𝑡 + 0.25𝑡2 + 0.0208333 𝑡3 + 0.000651042 𝑡4 + 8.13802 × 10−6 𝑡5

 +4.23849 × 10−8 𝑡6 + 9.49902 × 10−11𝑡7.
 

𝑦SCWs(𝑡) = 1.0 +  𝑡 + 0.25𝑡2 + 0.0208333 𝑡3 + 0.000651042 𝑡4 + 8.13802 × 10−6 𝑡5

 +4.2385 × 10−8 𝑡6 + 9.4948 × 10−11𝑡7.
 

𝑦TCWs(𝑡) = 1.0 +  𝑡 + 0.25𝑡2 + 0.0208333 𝑡3 + 0.000651042 𝑡4 + 8.13802 × 10−6 𝑡5

 +4.23847 × 10−8 𝑡6 + 9.50405 × 10−11𝑡7.
 

𝑦FCWs(𝑡) = 1.0 +  𝑡 + 0.25𝑡2 + 0.0208333 𝑡3 + 0.000651042 𝑡4 + 8.13802 × 10−6 𝑡5

 +4.23854 × 10−8 𝑡6 + 9.48487 × 10−11 𝑡7.
 

 
Figures 3 and 4 display the achieved solutions and corresponding errors via different wavelets. Tables 1 and 2 present the approximate 
wavelet solutions through different wavelets with an exact solution and the Legendre wavelets method (LWM) (Hafshejani et al., 2011). One 
may observe from the tables and figures that the wavelet solutions converge faster to the analytical result. The error decreases more rapidly 
when the number of basic functions increases. Table 3 shows the 𝐿2 norm consecutive error for the order of approximation �̂� = 7,8. Table 
3 confirms that the error decreases with the increase of the order of approximation �̂�, which shows the accuracy of the described scheme. 
The 𝐿2 norm consecutive error is calculated for the first time in this study using Eq. (15). 

 

                     

Figure 3. The behavior of the estimated solutions for different wavelets with �̂� = 8  in Example 1 
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Figure 4. Absolute errors of the solutions via different wavelets with �̂� = 8 in Example 1 
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Table 1. Computed values of 𝑦(𝑡) via the constructed approach compared to Example 1 

t LWs (Hafshejani et al., 2011),

m̂ 18=  

Present Method 

 (MWs), m̂ 8=  

Exact Solution 

0.000 0.99999999999999 0.999999725312605 1.0000000000000000 

0.125 1.12894709929840 1.128947112205302 1.1289470992984005 

0.250 1.26595307192248 1.265953063336836 1.2659530719224836 

0.375 1.41126781788344 1.411267815667616 1.4112678178834435 

0.500 1.56514511174700 1.565145122864885 1.5651451117469977 

0.625 1.72784263272750 1.727842631181262 1.7278426327275054 

0.750 1.89962199489918 1.899621983149178 1.8996219948991855 

0.875 2.08074877752466 2.080748786130356 2.0807487775246620 

1.000 2.27149255550106 2.271492523809371 2.2714925555010614 

 

Table 2. Approximated values of 𝑦(𝑡) via constructed scheme in Example 1 

t Present method (CWs),

m̂ 8=  

Present method (SCWs),

m̂ 8=  

Present method (TCWs),

m̂ 8=  

Present method (FCWs),

m̂ 8=  

0.000 1.0000000000000000 1.0000000000000000 0.9999999999999999 1.0000000000000000 

0.125 1.1289470992984003 1.1289470992984005 1.1289470992984005 1.1289470992984003 

0.250 1.2659530719224834 1.2659530719224836 1.2659530719224836 1.2659530719224834 

0.375 1.4112678178834435 1.4112678178834437 1.4112678178834435 1.4112678178834432 

0.500 1.5651451117469974 1.5651451117469979 1.5651451117469979 1.5651451117469972 

0.625 1.7278426327275052 1.7278426327275054 1.7278426327275054 1.7278426327275047 

0.750 1.8996219948991855 1.8996219948991860 1.8996219948991855 1.8996219948991848 

0.875 2.0807487775246620 2.0807487775246620 2.0807487775246620 2.0807487775246614 

1.000 2.2714925555010614 2.2714925555010620 2.2714925555010614 2.2714925555010610 

 

Table 3. Efficiency of the constructed method in the terms of 𝐿2 norm consecutive error via different wavelets in Example 1 

m̂  
MWs CWs SCWs TCWs FCWs 

7 5.86 × 10−6 1.49 × 10−11 1.50 × 10−11 2.12 × 10−11 2.03 × 10−11 

8 1.61 × 10−7 8.25 × 10−15 8.30 × 10−15 1.18 × 10−14 1.16 × 10−14 
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Example 2 

Consider the linear PDESK (Yalcinbas, 2011; Bahsi & Cevik, 2015) as: 

𝑑

𝑑𝑡
𝑦(𝑡) = −𝑦(0.8 𝑡) − 𝑦(𝑡),  0 ≤ 𝑡 ≤ 1, 

with the condition 

𝑦(0) = 1. 

There is no analytical solution to this problem. We treat this example for �̂� = 8 by using the scheme introduced in Section 5 and the wavelets 
series solution of 𝑦(𝑡) can be achieved as: 

𝑦MWs(𝑡) =  1.00007 − 0.0028539√𝑡 − 1.96514 𝑡 − 0.193559 𝑡1.5 + 2.3507 𝑡2

 −0.78919 𝑡2.5 − 0.59084 𝑡3 + 0.29353 𝑡3.5.
 

𝑦CWs(𝑡) = 1 − 2 𝑡 + 1.79997 𝑡2 − 0.983756 𝑡3 + 0.370964 𝑡4 − 0.10267 𝑡5

 +0.0204596 𝑡6 − 0.00229864 𝑡7.
 

𝑦SCWs(𝑡) = 1 − 2 𝑡 + 1.79996 𝑡2 − 0.983709 𝑡3 + 0.370873 𝑡4 − 0.102583 𝑡5

 +0.0204227 𝑡6 − 0.00229449 𝑡7.
 

𝑦TCWs(𝑡) = 1 − 2 𝑡 + 1.79994 𝑡2 − 0.9836 𝑡3 + 0.370581 𝑡4 − 0.102167 𝑡5

 +0.0201234 𝑡6 − 0.00220884 𝑡7.
 

𝑦FCWs(𝑡) = 1 − 2 𝑡 + 1.79998 𝑡2 − 0.983827 𝑡3 + 0.371189 𝑡4 − 0.103032 𝑡5

 +0.0207461 𝑡6 − 0.00238706 𝑡7.
 

 
As mentioned above, we do not know the analytical solution to the given problem. Therefore, we estimate the solutions in Table 4 and 
observe a convergence. A comparison of Table 4 with the solutions achieved through several schemes is displayed in Table 5 (Tohidi et al., 
2013; Yalcinbas et al., 2015; Yang, 2018; Yuzbas et al., 2014; Bahsi & Cevik, 2015; Yalcinbas et al., 2011; Sezer & Akyuz-Dascioglu, 2007). The 
calculated approximate solutions and corresponding absolute errors are displayed in Figures 5 and 6, respectively. Table 6 shows the 𝐿2 norm 
consecutive error for the order of approximation �̂� = 7,8, which clearly shows the accuracy of the constructed approach. The numerical 
results of the suggested method are consistent. 
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Figure 5. The behavior of the approximate wavelet solutions for different wavelets with �̂� = 8 in Example 2 

 
Figure 6. Estimate absolute errors of the solutions through different wavelets with �̂� = 8 in Example 2 

 

 

Table 4. Approximated values of 𝑦(𝑡) with m̂ 8=  using the proposed scheme in Example 2 

t 
Present Method 

(MWs) 
Present method 

(FCWs) 
Present method 

(TCWs) 
Present method 

(SCWs) 
Present method 

(CWs) 

0.0 1.0000737941 0.9999999944 0.9999999133 0.9999999523 0.9999999893 

0.2 0.6646904337 0.6646910015 0.6646909898 0.6646909954 0.6646909970 

0.4 0.4335604608 0.4335607737 0.4335607859 0.4335607800 0.4335607781 

0.6 0.2764814550 0.2764823377 0.2764823264 0.2764823318 0.2764823311 

0.8 0.1714859287 0.1714840995 0.1714841125 0.1714841063 0.1714841076 

1.0 0.1026802165 0.1026700336 0.1026701212 0.1026700791 0.1026701151 
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Table 5. Approximated values of 𝑦(𝑡) using different schemes for comparison in Example 2 

 t 

Bernoulli 
method (Tohidi 

et al., 2013), 
 �̂� = 7 

Bernstein 
method 

(Yalcinbas et al. 
2015),  �̂� = 11 

Chebyshev 
method (Yang, 
2018),  �̂� = 7 

Laguerre 
method 

(Yuzbas et al., 
2014),  �̂� = 9 

PIA (1,1) 
(Bahsi, & 

Cevik, 2015) 

Hermite 
method 

(Yalcinbas et 
al., 2011),  �̂� =

9 

Taylor method 
(Sezer & Akyuz-

Dascioglu, 2007), 
 �̂� = 12 

0.0 1.0000000 1.00000000 1.00000000 1.0000000 1.0000000 1.000000 1.000000 

0.2 0.6646905 0.66469100 0.66469101 0.6646910 0.6646910 0.664691 0.664691 

0.4 0.4335605 0.43356077 0.43356077 0.4335607 0.4335607 0.433561 0.433561 

0.6 0.2764822 0.27648233 0.27648233 0.2764831 0.2764823 0.276482 0.276482 

0.8 0.1714836 0.17148411 0.17148412 0.1714942 0.1714841 0.171484 0.171484 

1.0 0.1026832 0.10267012 0.10267013 0.1027437 0.1026701 0.102670 0.102670 

 

Table 6. Efficiency of the constructed method in terms of 𝐿2 norm consecutive error using different wavelets in Example 2 
  

�̂� 
MWs CWs SCWs TCWs FCWs 

7 1.10 × 10−4 4.39 × 10−6 4.13 × 10−6 5.33 × 10−6 6.31 × 10−6 

8 1.61 × 10−5 2.01 × 10−7 1.95 × 10−7 2.56 × 10−7 2.93 × 10−7 
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Example 3 

Consider the PDESK as 

𝑑

𝑑𝑡
𝑦(𝑡) = 0.95𝑦(𝑡) − 𝑦(0.99 𝑡),  0 ≤ 𝑡 ≤ 1, 

with the initial condition 

𝑦(0) = 1. 

There is no analytical solution to this problem. We solve it by considering the example for �̂� = 8 using the scheme introduced in Section 5. 
Because we do not know the analytical solution to the given problem, we show the accuracy of the described scheme by evaluating the 
residual error function. Table 7 shows the estimated numerical solutions via different wavelets, showing smooth convergence. Figure 7 plots 
the approximated solutions obtained for �̂� = 8. Figure 8 shows the graphical representation of the estimated errors in terms of residual 
function via different wavelets. Figure 7 shows that the approximated solution of the considered example decreases as 𝑡 increases from 0 to 
1. Table 8 exhibits the 𝐿2 norm consecutive error for �̂� = 7,8. Table 8 confirms that the error decreases rapidly with increasing order of 
approximation, �̂�, which clearly shows the effectiveness of the constructed scheme. 

 

Figure 7. The behavior of the approximate solutions for different wavelets with �̂� = 8 in Example 3 

 

               

Figure 8. Error functions of the solutions using different wavelets with  �̂� = 8  in Example 3 
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Table 7. Approximated values of 𝑦(𝑡) using the proposed scheme in Example 3 

  t 
Present Method 
(MWs),  �̂� = 8 

Present method (CWs), 
 �̂� = 8 

Present method 
(SCWs),  �̂� = 8 

Present method 
(TCWs),  �̂� = 8 

Present method 
(FCWs),  �̂� = 8 

0.0 0.9999999999816 0.9999999999999 1.0000000000000 1.0000000000000 0.9999999999999 

0.2 0.9900399198148 0.9900399198147 0.9900399198147 0.9900399198147 0.9900399198147 

0.4 0.9801593591690 0.9801593591690 0.9801593591690 0.9801593591690 0.9801593591690 

0.6 0.9703578393905 0.9703578393904 0.9703578393904 0.9703578393904 0.9703578393904 

0.8 0.9606348837531 0.9606348837534 0.9606348837534 0.9606348837534 0.9606348837534 

1.0 0.9509900174734 0.9509900174754 0.9509900174754 0.9509900174754 0.9509900174754 

 

Table 8. Efficiency of the constructed method in terms of 𝐿2, norm consecutive error using different wavelets in Example 3. 

�̂� 
MWs CWs SCWs TCWs FCWs 

7 2.11 × 10−9 2.62 × 10−16 2.36 × 10−17 2.73 × 10−17 1.60 × 10−16 

8 1.17 × 10−11 2.16 × 10−16 3.30 × 10−18 1.33 × 10−17 3.11 × 10−18 

 

  



 

92 
 

Regular Issue Malaysian Journal of Science 

DOI:https//doi.org/10.22452/mjs.vol43no2.9 

Malaysian Journal of Science 43(2): 75-95 (June 2024) 

Example 4. 

Consider the nonlinear PDESK (Hafshejani et al., 2011; Anakira et al., 2013) as 

𝑑

𝑑𝑡
𝑦(𝑡) = 1 − 2𝑦2 (

𝑡

2
) ,  0 ≤ 𝑡 ≤ 1, 

with the condition 

𝑦(0) = 0. 

The analytical solution to the example is provided as follows: 

𝑦(𝑡) = 𝑠𝑖𝑛(𝑡). 

We treat this example for �̂� = 8 using the procedure given in Section 5. Figure 9 plots the approximate solutions obtained using different 
wavelets for �̂� = 8. Table 9 displays the estimated absolute errors using different wavelets to compare the method (Hafshejani et al., 2011). 
Table 10 gives the maximum absolute error for �̂� = 6,7,8. The maximum absolute errors to the same problem are 1.2 × 10−6, 4.0 × 10−8, 
9.99 × 10−10, and 1.2 × 10−7 (for 3 iteration), respectively (Alomari et al., 2009; Anakira et al., 2013; Hafshejani et al., 2011; Bahsi & Cevik, 
2015). Table 11 exhibits the 𝐿2 norm consecutive error for �̂� = 7,8, which confirms that the error decreases rapidly as the order of 
approximation �̂� increases. 

 

 
Figure 9. The behavior of the approximate solutions for different wavelets with �̂� = 8 in Example 4 

 

Table 9. Absolute errors of 𝑦(𝑡) using the current scheme at �̂� = 8 compared to Example 4 

 

t MWs CWs SCWs TCWs FCWs 

LWM (Hafshejani 
et al., 2011) 

�̂� = 18 

0.125 9.7 × 10−6 5.1 × 10−10 2.5 × 10−10 1.1 × 10−10 3.8 × 10−10 1.9 × 10−9 

0.250 6.6 × 10−6 1.4 × 10−11 1.7 × 10−10 3.6 × 10−10 1.6 × 10−11 1.9 × 10−9 

0.375 6.4 × 10−6 2.8 × 10−11 2.8 × 10−11 1.3 × 10−10 1.8 × 10−10 1.9 × 10−9 

0.500 7.3 × 10−6 4.7 × 10−10 2.9 × 10−10 2.8 × 10−10 3.1 × 10−10 9.9 × 10−10 

0.625 5.1 × 10−6 2.8 × 10−11 1.3 × 10−11 1.2 × 10−10 1.5 × 10−10 9.9 × 10−10 

0.750 2.9 × 10−6 2.6 × 10−11 1.1 × 10−10 8.3 × 10−11 3.0 × 10−10 9.9 × 10−10 

0.875 4.0 × 10−6 4.3 × 10−10 1.3 × 10−10 2.8 × 10−10 1.4 × 10−11 9.9 × 10−10 

1.000 2.7 × 10−6 5.6 × 10−10 1.8 × 10−9 4.1 × 10−10 3.2 × 10−9 9.9 × 10−10 
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Table 10. Maximum absolute error using different wavelets in Example 4 

�̂� 
MWs CWs SCWs TCWs FCWs 

6 1.97 × 10−4 2.96 × 10−7 2.02 × 10−7 1.36 × 10−7 3.09 × 10−7 

7 2.59 × 10−5 1.66 × 10−8 7.53 × 10−9 8.36 × 10−9 1.30 × 10−8 

8 7.42 × 10−6 2.20 × 10−10 8.63 × 10−11 3.35 × 10−10 1.64 × 10−10 

 

Table 11. Efficiency of the proposed method in terms of 𝐿2 norm consecutive error using different wavelets in Example 4 

�̂� 
MWs CWs SCWs TCWs FCWs 

7 1.50 × 10−4 2.34 × 10−7 2.43 × 10−7 3.46 × 10−7 3.21 × 10−7 

8 1.22 × 10−5 1.53 × 10−8 1.50 × 10−8 2.12 × 10−8 2.11 × 10−8 

8. Conclusion 

     This paper proposes an approximation scheme using five 
orthogonal polynomial wavelets to solve PDESK. This method is 
examined using four problems. The error graphs and tables show 
the Chebyshev wavelets family, especially SCWs, is good for an 
approximate PDESK solution. Since most elements of derived 
matrices in the scheme are zeros, the computing time is short. The 
key advantage of the constructed scheme is that it can obtain 
results with high accuracy using fewer collocation nodes. The 
approximated PDESK solutions are provided in the form of graphs 
and tables. The obtained solution for the given examples shows 
that this scheme perfectly approximates the existing exact 
solution. The developed scheme is simple to implement. 
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