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Abstract: A two-warehouse inventory model with deteriorating items and rework process with time-varying demand rate is presented. 

The last-in-first-out (LIFO) and first-in-first-out (FIFO) policies are considered with the assumption that the holding cost is higher in the 

rented warehouse (RW) compared to the owned warehouse (OW). The aim of the proposed model is to ascertain the optimum values of 

time in a production cycle that will minimise the total relevant cost, TRC*. We have utilised Microsoft Excel Solver as a solution tool, in 

which the generalised reduced gradient (GRG Nonlinear) method has been chosen as the solving method. The result is further verified 

using the built-in function in the Mathematica software. We observed that given same changes made to the parameters in both the LIFO 

and FIFO systems, a lower TRC* is obtained in the former. This shall mean that the LIFO system is less expensive than the FIFO system, 

provided that the holding cost in RW is higher than that in OW. The flow of inventory in the LIFO system suggests that items stored last in 

the OW will be dispatched first. This is an important factor for manufacturers for ensuring that items are distributed at optimal freshness.  
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1. Introduction 

 

In the classical inventory model, a single-warehouse 

system is generally considered where the capacity of the 

warehouse is known and limited. A single warehouse is more 

suitable for small businesses in which it is able to 

accommodate sufficient stock for their operation. However, 

for large businesses, a supplementary storage facility with a 

large space capacity is essential to hold excess inventories 

due to several factors such as temporary discounts and 

launching of new products. In order to manage the volatility 

in demand, companies often use rented warehouses (RWs) 

along with owned warehouses (OWs) to stock inventories 

sufficiently over time to absorb any fluctuations in demand 

(Kumar et al., 2018). Therefore, it is essential to focus on the 

inventory problem with more than just one warehouse, 

which will make the inventory system hold greater validity 

and relevance in real-life situations. 

 

 Over the years, numerous researchers have 

considered the two-warehouse system in their inventory 

models. The two-warehouse inventory model was first 

introduced by Hartley (1976) with the assumption that the 

holding cost in RW is greater than that in OW. Sarma (1983) 

proposed the inventory model with two-level storage and 

optimum release rule. Goswami et al. (1992) proposed an 

economic quantity model with two warehouses under time-

varying linearly increasing demand. They assumed that 

transportation costs from RW to OW are proportional to the 

quantity transported and that items are delivered in an 

irregular pattern from RW to OW. Panda et al. (2010) also 

considered two-warehouse inventory models and focused 

on multiple retailers with price- and stock-dependent 

demand.  

 

Another common and unrealistic assumption in the 

classical inventory model is that the received items are of 

perfect quality. However, in real-life situations, this 

assumption may not always be true. Realistically, items such 

as food, cosmetics, medicine, among others deteriorate over 

time. The existence of deterioration was first considered by 

Ghare et al. (1963). Rafaat (1991) also conducted a survey on 

the literature relating to inventory models with deteriorating 

items. Singh et al. (2013) had further incorporated an 

imperfect production process where the demand rate is 

assumed to be time dependent, while the production rate is 

dependent on the demand rate. Agrawal et al. (2013) 

considered the presence of deteriorating items in their 

model and provided the option to choose between a single- 

or two-warehouse system. They concluded that the cost 

acquired at OW due to high deterioration rate could be 

balanced out by purchasing more items to be stored in RW, 

hence reducing the shortage cost. 
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Throughout the years, several other researchers such as 

Pakkala et al. (1991), Bankherouf (1997), Lee et al. (2000), 

Wee et al. (2005), Rong et al. (2008), Lee et al. (2009), Panda 

et al. (2012), Yadav et al. (2013), Bhunia et al. (2014), 

Kaliraman et al. (2017), Chakrabarty et al. (2018), Shaikh et 

al. (2019), Indrajitsingha et al. (2019), Aastha et al. (2020), 

and Gupta et al. (2020) have considered two-warehouse 

inventory models for deteriorating items with different 

types of demand.  

 

It is generally assumed that the RW offers better 

preserving facilities than the OW; therefore, it charges a 

higher holding cost (Lee, 2006). The two-warehouse 

inventory models discussed above naturally adopt the LIFO 

(last-in-first-out) inventory policy. However, their studies do 

not focus or highlight the aforementioned point. The 

inventory policy needs to be further investigated, especially 

in the handling of deteriorating items.  

 

Motivated from this significant point, Lee (2006) 

considered the two-warehouse inventory problem for 

deteriorating items and modified the LIFO model by Pakkala 

et al. (1992). Items stored later in RW will be utilised prior to 

those stored in OW in this model. Lee (2006) further 

proposed a model with a policy that is the opposite of the 

LIFO phenomenon, known as the FIFO (first-in-first-out) 

policy. In this model, items that are stored in OW first will be 

the first to be exhausted. It was concluded that the key in 

choosing between the two mentioned models are the 

deterioration rates and holding costs. 

  

Similarly, Xu et al. (2017) considered a constant demand 

rate with deteriorating items over a finite time horizon in 

their two-warehouse inventory problem. They compared 

their model with the LIFO, modified LIFO, and FIFO inventory 

models and derived the critical conditions of the production 

cycle number, inventory holding and deterioration costs in 

the two warehouses. 

 

Unlike other studies on LIFO and FIFO policies, Alamri et 

al. (2008) proposed a new policy named allocation-in-

fraction-out (AIFO). The policy implies that inventory in both 

warehouses experience simultaneous consumption 

fractions, which indicate that the items are depleted by the 

end of the same cycle. 

 

Introducing a rework process in an inventory model 

would allow the reduction of the costs involved in a 

production process. Wee et al. (2012) developed an 

economic production quantity model for deteriorating items 

with rework and stochastic preventive maintenance time. 

LIFO policy and lost sales were also considered in their study. 

Wee et al. (2013) then developed a production model using 

the FIFO rule for deteriorating items with stochastic 

preventive maintenance time and rework process. They 

assumed that the deterioration rates for both serviceable 

and recoverable items are the same. 

 

Chung et al. (2009) suggested an inventory model that 

incorporates a two-warehouse system and the existence of 

defectives due to an imperfect quality production process. 

The defectives are assumed to be sold as a single batch at a 

discounted price. Yu (2009) developed an inventory model 

with deteriorating loss, shortage backordering, and trade 

credit with the aim to optimise the two-echelon system. A 

supplier and a distributor are considered in the two-

warehouse environment system where the rental cost of the 

rented warehouse decreases over time. The study implied 

that coordination among distributors and suppliers is 

necessary to reduce total costs. 

 

Ghiami et al. (2020) adopted the conventional logic of the 

OW and RW method into their study. They modelled a two-

warehouse supply chain for a deteriorating product involving 

a retailer and a wholesaler. The retailer’s main store or shelf 

is considered to be the OW, while the back-room for keeping 

extra stock is the RW. A continuous resupply FIFO policy is 

applied between the two-warehouses. 

 

Considering the gaps within the study area where the 

aforementioned factors are considered simultaneously, the 

aim of this study is to develop a two-warehouse model by 

incorporating the LIFO and FIFO policies while considering a 

rework process. Our first approach is to consider an 

increasing demand rate instead of the commonly used 

constant demand rate. This approach would allow inventory 

operators to plan their production accordingly when 

launching new items into the market. Following the current 

trend, we could see that a newly launched product will 

experience a linearly increasing demand rate at the 

beginning of the launching period to a certain extent. A 

different approach on the purpose of RW has been 

incorporated in this paper, where the space is utilised to 

store finished products from a rework process with special 

requirements.  

 

The second dilemma we have encountered is that some 

of the existing studies done have only considered a perfect 

production process. In other words, the presence of 

defective items is overlooked. Therefore, we have included 

a more realistic condition by introducing an imperfect 

production process, hence producing defective items. 

Aiming to lower the total relevant cost of the inventory 

model, a rework process is introduced in this study. In 

addition, we have proposed to separate perfect items from 

the defectives and assumed that the items are being 

repaired or will undergo the rework process only in the RW, 

once the production period has ended. This would be 

convenient and beneficial to manufacturers who have 

limited resources such as machines or operators, as they are 
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able to focus on the production process first and the rework 

process later.  

 

The final motivating factor would be the commonly used 

assumption that a storage facility or warehouse has an 

unlimited capacity. This is unrealistic as a storage space 

would be quickly filled up during an ongoing production 

process. Hence, we have included an approach where the 

OW would have limited capacity. Once the OW has reached 

its maximum capacity, excess items may be stored in a 

second warehouse, known as the rented warehouse.  

In summary, we have proposed a two-warehouse 

inventory model with deteriorating items and a rework 

process for time-varying demand rate problem. The LIFO and 

FIFO policies are also incorporated in our model. 
 
2. Mathematical Formulations 
 

2.1 Notations  

Listed below are the notations used in the models discussed 

in this paper. 

𝒇(𝒕) linearly increasing demand rate 𝒇(𝒕)  =  𝒂 +

 𝒃𝒕, where 𝒂 is the initial inventory level and 𝒃 is 

the gradient for the demand function 

𝑷 constant production rate, units per unit time 

where 𝑷 >  𝒇(𝒕) for all 𝒕 

𝑹 rework process rate, units per unit time where 

𝑹 >  𝒇(𝒕) for all 𝒕 

𝒙 product defect rate, units per unit time 

𝜶 deteriorating rate in OW and RW, units per unit 

time where 𝟎 ≤ 𝜶 ≤ 𝟏 

𝑺 production setup cost, $ per setup 

𝒄𝑷 production processing cost per unit item, $ 

𝒄𝑹 rework processing cost per unit item, $ 

𝒄𝑫 deterioration cost per unit item, $ 

𝒕𝒊 time for each stage 

𝑻 batch cycle time period 

𝑰𝒊(𝒕) inventory level at time 𝒕𝒊 where 𝟎 ≤ 𝒊 ≤  𝟓 for 

LIFO policy and 𝟎 ≤  𝒊 ≤ 𝟔 for FIFO policy 

𝒉𝟏, 𝒉𝟐 holding costs per unit item, $ in OW and RW, 

respectively 

𝑾 maximum inventory of OW, items 

𝑸 maximum inventory of RW, items 

𝑻𝑹𝑪 total relevant costs per unit time, $ 

 

2.2 Assumptions 

The following are the assumptions adopted in this study: 

 

(i) Lead time is zero, while the replenishment rate is 

finite. 

(ii) RW has an unlimited capacity. 

(iii) The perfect items from the production process are 

stored in OW, while the imperfect items from the 

rework process are sent to RW. The inventories in 

both warehouses decrease due to deterioration of 

items and fulfilment of demand. 

(iv) The rework process is assumed to be perfect since 

special care is given to the process. Hence, all items 

that have been reworked are assumed to be 

perfect. The total number of reworked items is 

equal to the total defective items from the normal 

production process. 

(v) The production rate, 𝑷, and rework rate, 𝑹, are 

assumed to be different. 

 

  



 

20 
 

Regular Issue Malaysian Journal of Science 

DOI:https//doi.org/10.22452/mjs.vol42no1.3 

Malaysian Journal of Science 42(1): 17-31 (February 2023) 

2.3 LIFO Policy 

 

 
Figure 1. Inventory level with LIFO policy 

 

Figure 1 illustrates the production system of a two-warehouse model with LIFO policy. The inventory stage can be divided into four 

intervals separated by 𝒕𝟏, 𝒕𝟐, 𝒕𝟑, and 𝑻.   

The production cycle begins at 𝒕𝟎, where fulfilment of demand and deterioration occurs simultaneously in the first interval. Since 

the production process is assumed to be imperfect, defective items are produced in this interval. The defectives are separated and 

kept aside to be sent to RW at 𝒕𝟏. The differential equation representing the change of inventory level in OW during the interval 

𝒕𝟎 ≤ 𝒕 ≤ 𝒕𝟏 is represented by: 

𝑑𝐼1(𝑡)

𝑑𝑡
= 𝑃 − 𝑥 − 𝑓(𝑡) − 𝛼𝐼1(𝑡)                  ;  𝑡0 ≤ 𝑡 ≤ 𝑡1                                  (1) 

 

By solving differential equation (1) with the initial condition, 𝑰𝟏(𝒕𝟎) = 𝟎, the inventory level in this interval is given as: 

 

𝐼1(𝑡) = [
(𝑃 − 𝑥 − 𝑎)

𝛼
+

𝑏

𝛼2
] (1 − 𝑒−𝛼𝑡) −

𝑏𝑡

𝛼
                                                     (2) 

 

While defective items were sent to RW to undergo rework process, items in OW are kept idle or on standby during the interval 

𝒕𝟏 ≤ 𝒕 ≤ 𝒕𝟑. However, due to deterioration, items will deplete at the rate 𝜶 in which the change of inventory level is represented 

by: 

 

𝑑𝐼2(𝑡)

𝑑𝑡
= −𝛼𝐼2(t)                                             ;  𝑡1 ≤ 𝑡 ≤ 𝑡3                                  (3) 

 

Considering the boundary condition 𝑰𝟐(𝒕𝟏) = 𝑾, where 𝑾 represents the maximum capacity of OW, we have the following 

inventory level: 

 

𝐼2(𝑡) = 𝑊𝑒𝛼(𝑡1−𝑡)                                                                                                      (4) 

 

The rework process in RW begins in the interval 𝒕𝟏 ≤ 𝒕 ≤ 𝒕𝟐, where items are depleted due to deterioration and fulfilment of 

demand. Hence, the differential equation representing the change of inventory level during this interval is denoted by: 

 

𝑑𝐼3(𝑡)

𝑑𝑡
= 𝑅 − 𝑓(𝑡) − 𝛼𝐼3(t)                          ;  𝑡1 ≤ 𝑡 ≤ 𝑡2                                  (5) 

 

Considering the boundary condition 𝑰𝟑(𝒕𝟏) = 𝟎, the inventory level in this interval is denoted by: 

 

𝐼3(𝑡) =
1

𝛼
(𝑅 − 𝑎 − 𝑏𝑡) +

𝑏

𝛼2 − [
1

𝛼
(𝑅 − 𝑎 − 𝑏𝑡1) +

𝑏

𝛼2] 𝑒𝛼(𝑡1−𝑡)                 (6) 
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The rework process in RW ends at 𝒕𝟐, in which the reworked items are assumed to be as good as new. The items will now deplete 

in the interval 𝒕𝟐 ≤ 𝒕 ≤ 𝒕𝟑  due to deterioration and fulfilment of demand and eventually utilised completely at 𝒕𝟑. The change of 

inventory level is represented by:  

 

𝑑𝐼4(𝑡)

𝑑𝑡
= −𝑓(𝑡) − 𝛼𝐼4(t)                                ;  𝑡2 ≤ 𝑡 ≤ 𝑡3                                 (7) 

 

Considering the boundary condition 𝑰𝟒(𝒕𝟑) = 𝟎, the inventory level in this interval is denoted by: 

 

𝐼4(𝑡) = [
1

𝛼
(𝑎 + 𝑏𝑡3) −

𝑏

𝛼2] 𝑒𝛼(𝑡3−𝑡) −
(𝑎 + 𝑏𝑡)

𝛼
+

𝑏

𝛼2                                      (8) 

 

Once the items in RW are completely depleted at 𝒕𝟑, fulfilment of demand and deterioration will be covered by the remaining 

inventory in OW during the last interval 𝒕𝟑 ≤ 𝒕 ≤ 𝑻. The production cycle ends at 𝑻, in which the inventory level in OW reaches 

zero and is completely utilised. The change in inventory level in this interval is denoted by: 

 

𝑑𝐼5(𝑡)

𝑑𝑡
= −𝑓(𝑡) − 𝛼𝐼5(t)                                ;  𝑡3 ≤ 𝑡 ≤ 𝑇                                  (9) 

 

Considering the boundary condition 𝑰𝟓(𝑻) = 𝟎, the inventory level in this interval is denoted by: 

 

𝐼5(𝑡) = [
(𝑎 + 𝑏𝑇)

𝛼
−

𝑏

𝛼2
] 𝑒𝛼(𝑇−𝑡) −

(𝑎 + 𝑏𝑡)

𝛼
+

𝑏

𝛼2
                                         (10) 

 

Note that items in RW that entered the production cycle last are the items to be utilised first, hence the name ‘last-in-first-out’ 

policy. 

 

The maximum inventory of OW, 𝑾, is governed by equation 𝑾 =  𝑰𝟏(𝒕𝟏); hence, we have the following equation: 

 

𝑊 = [
(𝑃 − 𝑥 − 𝑎)

𝛼
+

𝑏

𝛼2] (1 − 𝑒−𝛼𝑡1) −
𝑏𝑡1

𝛼
                                                  (11) 

 

Next, let 𝑨𝒊 denote the time-weighted inventory for each interval, where 𝒊 = 𝟏, 𝟐, … , 𝟓, and it represents the amount of inventory 

under the curve 𝑰𝒊(𝒕). The following are the respective equations for 𝑨𝒊 in the corresponding intervals: 

 

 In the interval 𝒕𝟎 ≤ 𝒕 ≤ 𝒕𝟏, 

 

𝐴1 = ∫ 𝐼1(𝑡)
𝑡1

0

𝑑𝑡 

      =
(𝑃 − 𝑥)𝑡1

𝛼
−

1

𝛼
(𝑎𝑡1 +

𝑏

2
𝑡1

2) +
𝑏𝑡1

𝛼2 + (
𝑃 − 𝑥 − 𝑎

𝛼2 +
𝑏

𝛼3) (𝑒−𝛼𝑡1 − 1)                           (12) 

 

In the interval 𝒕𝟏 ≤ 𝒕 ≤ 𝒕𝟑, 

 

𝐴2 = ∫ 𝐼2(𝑡)𝑑𝑡 =
𝑊

𝛼
[1 − 𝑒𝛼(𝑡1−𝑡3)]                                                                                               (13)

𝑡3

𝑡1

 

 

In the interval 𝒕𝟏 ≤ 𝒕 ≤ 𝒕𝟐, 

 

𝐴3 = ∫ 𝐼3(𝑡)𝑑𝑡
𝑡2

𝑡1

 

       =
𝑅

𝛼
(𝑡2 − 𝑡1) −

1

𝛼
(𝑎𝑡2 +

𝑏

2
𝑡2

2) +
1

𝛼
(𝑎𝑡1 +

𝑏

2
𝑡1

2) +
𝑏

𝛼2
(𝑡2 − 𝑡1) 

          + [
1

𝛼2
(𝑅 − 𝑎 − 𝑏𝑡1) +

𝑏

𝛼3] [𝑒𝛼(𝑡1−𝑡2) − 1]                                                                              (14) 

 



 

22 
 

Regular Issue Malaysian Journal of Science 

DOI:https//doi.org/10.22452/mjs.vol42no1.3 

Malaysian Journal of Science 42(1): 17-31 (February 2023) 

In the interval 𝒕𝟐 ≤ 𝒕 ≤ 𝒕𝟑, 

 

𝐴4 = ∫ 𝐼4(𝑡)𝑑𝑡
𝑡3

𝑡2

 

      =
1

𝛼
(𝑎𝑡2 +

𝑏

2
𝑡2

2) −
1

𝛼
(𝑎𝑡3 +

𝑏

2
𝑡3

2) +
𝑏

𝛼2
(𝑡3 − 𝑡2) 

          + [
1

𝛼2
(𝑎 + 𝑏𝑡3) −

𝑏

𝛼3
] [𝑒𝛼(𝑡3−𝑡2) − 1]                                                                                                        (15) 

 

In the interval 𝒕𝟑 ≤ 𝒕 ≤ 𝑻, 

 

𝐴5 = ∫ 𝐼5(𝑡)𝑑𝑡
𝑇

𝑡3

 

      =
1

𝛼
(𝑎𝑡3 +

𝑏

2
𝑡3

2) −
1

𝛼
(𝑎𝑇 +

𝑏

2
𝑇2) +

𝑏

𝛼2
(𝑇 − 𝑡3) 

          + [
1

𝛼2
(𝑎 + 𝑏𝑇) −

𝑏

𝛼3] [𝑒𝛼(𝑇−𝑡3) − 1]                                                                                                           (16) 

 

 

Assuming that the rework process is perfect, all defective items that have undergone rework will turn into perfect items. Hence, 

we have the following equation: 

 

                 𝑥𝑡1 = 𝑅(𝑡2 − 𝑡1) 

                    𝑡2 =
(𝑅 + 𝑥)𝑡1

𝑅
                                                                                                                                                         (17) 

 

The total inventory holding cost is the sum of the holding costs in both OW and RW, which is given as: 

 

𝐻𝐶 =
ℎ1

𝑇
(𝐴1 + 𝐴2 + 𝐴5) +

ℎ2

𝑇
(𝐴3 + 𝐴4) 

       =
ℎ1

𝑇
{
1

𝛼
[(𝑃 − 𝑥)𝑡1 − (𝑎𝑡1 +

𝑏

2
𝑡1

2) + (𝑎𝑡3 +
𝑏

2
𝑡3

2) − (𝑎𝑇 +
𝑏

2
𝑇2) −

1

𝛼2
(𝑎 + 𝑏𝑡3)   +

𝑏

𝛼3

−
𝑊

𝛼
𝑒𝛼(𝑡1−𝑡3) + [

1

𝛼2
(𝑎 + 𝑏𝑇) −

𝑏

𝛼3
] 𝑒𝛼(𝑇−𝑡3)]} 

        +
ℎ2

𝑇
{
1

𝛼
[𝑅(𝑡2 − 𝑡1) + (𝑎𝑡1 +

𝑏

2
𝑡1

2) − (𝑎𝑡3 +
𝑏

2
𝑡3

2)] −
𝑅

𝛼2

+ [
1

𝛼2
(𝑅 − 𝑎 − 𝑏𝑡1) +

𝑏

𝛼3] 𝑒𝛼(𝑡1−𝑡2) + [
1

𝛼2
(𝑎 + 𝑏𝑡3) −

𝑏

𝛼3] 𝑒𝛼(𝑡3−𝑡2)}                                                                (18) 

 

 

The total number of deteriorated items is: 

 

𝐺 = 𝛼(𝐴1 + 𝐴2 + 𝐴3 + 𝐴4 + 𝐴5) 

    = [(𝑃 − 𝑥)𝑡1 + 𝑅(𝑡2 − 𝑡1) + 𝑊[1 − 𝑒𝛼(𝑡1−𝑡3)] − (𝑎𝑇 +
𝑏

2
𝑇2)]    

    −
1

𝛼
[𝑃 + 𝑅 − 𝑥 − 𝑏(𝑡1 − 𝑡3)] + (

𝑃 − 𝑥 − 𝑎

𝛼
+

𝑏

𝛼2) 𝑒−𝛼𝑡1       

    + [
1

𝛼
(𝑅 − 𝑎 − 𝑏𝑡1) +

𝑏

𝛼2] 𝑒𝛼(𝑡1−𝑡2) + [
1

𝛼
(𝑎 + 𝑏𝑡3) −

𝑏

𝛼2] 𝑒𝛼(𝑡3−𝑡2) + [
1

𝛼
(𝑎 + 𝑏𝑇) −

𝑏

𝛼2] 𝑒𝛼(𝑇−𝑡3)                     (19) 
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Hence, the total deteriorating cost is given by: 

 

𝐷𝐶 =
𝑐𝐷𝐺

𝑇
 

        =
𝑐𝐷

𝑇
{[(𝑃 − 𝑥)𝑡1 + 𝑅(𝑡2 − 𝑡1) + 𝑊[1 − 𝑒𝛼(𝑡1−𝑡3)] − (𝑎𝑇 +

𝑏

2
𝑇2)]

−
1

𝛼
[𝑃 + 𝑅 − 𝑥 − 𝑏(𝑡1 − 𝑡3)] + (

𝑃 − 𝑥 − 𝑎

𝛼
+

𝑏

𝛼2) 𝑒−𝛼𝑡1

+ [
1

𝛼
(𝑅 − 𝑎 − 𝑏𝑡1) +

𝑏

𝛼2] 𝑒𝛼(𝑡1−𝑡2) + [
1

𝛼
(𝑎 + 𝑏𝑡3) −

𝑏

𝛼2] 𝑒𝛼(𝑡3−𝑡2)

+ [
1

𝛼
(𝑎 + 𝑏𝑇) −

𝑏

𝛼2] 𝑒𝛼(𝑇−𝑡3)}                                                                                                                                                         (20) 

 

Finally, the total relevant cost per unit time, i.e., 𝑻𝑹𝑪∗, for the model with LIFO policy is: 

 

𝑇𝑅𝐶(𝑡1, 𝑡3, 𝑇) =
𝑆

𝑇
+

𝑐𝑃𝑃𝑡1

𝑇
+

𝑐𝑅𝑥𝑡1

𝑇
 

+
ℎ1

𝑇
{
1

𝛼
[(𝑃 − 𝑥)𝑡1 − (𝑎𝑡1 +

𝑏

2
𝑡1

2) + (𝑎𝑡3 +
𝑏

2
𝑡3

2) − (𝑎𝑇 +
𝑏

2
𝑇2)] −

1

𝛼2
(𝑎 + 𝑏𝑡3) +

𝑏

𝛼3 −
𝑊

𝛼
𝑒𝛼(𝑡1−𝑡3)

+ [
1

𝛼2
(𝑎 + 𝑏𝑇) −

𝑏

𝛼3] 𝑒𝛼(𝑇−𝑡3)} 

+
ℎ2

𝑇
{
1

𝛼
[𝑅(𝑡2 − 𝑡1) + (𝑎𝑡1 +

𝑏

2
𝑡1

2) − (𝑎𝑡3 +
𝑏

2
𝑡3

2)] −
𝑅

𝛼2 + [
1

𝛼2
(𝑅 − 𝑎 − 𝑏𝑡1) +

𝑏

𝛼3] 𝑒𝛼(𝑡1−𝑡2)

+ [
1

𝛼2
(𝑎 + 𝑏𝑡3) −

𝑏

𝛼3
] 𝑒𝛼(𝑡3−𝑡2)}  

+
𝑐𝐷

𝑇
{[(𝑃 − 𝑥)𝑡1 + 𝑅(𝑡2 − 𝑡1) + 𝑊[1 − 𝑒𝛼(𝑡1−𝑡3)] − (𝑎𝑇 +

𝑏

2
𝑇2)] −

1

𝛼
[𝑃 + 𝑅 − 𝑥 − 𝑏(𝑡1 − 𝑡3)]

+ (
𝑃 − 𝑥 − 𝑎

𝛼
+

𝑏

𝛼2
) 𝑒−𝛼𝑡1 + [

1

𝛼
(𝑅 − 𝑎 − 𝑏𝑡1) +

𝑏

𝛼2
] 𝑒𝛼(𝑡1−𝑡2) + [

1

𝛼
(𝑎 + 𝑏𝑡3) −

𝑏

𝛼2
] 𝑒𝛼(𝑡3−𝑡2)

+ [
1

𝛼
(𝑎 + 𝑏𝑇) −

𝑏

𝛼2] 𝑒𝛼(𝑇−𝑡3)}                                                                                                                               (21) 

 

 

Referring to equation (21), we note that finding the optimal values of 𝒕𝟏, 𝒕𝟑, and 𝑻 analytically is extremely tedious. Hence, we 

have explored alternative methods and obtained the best solution for 𝑻𝑹𝑪 numerically, which will be discussed in Section 2.5. 

 

2.4 FIFO Policy 

 

 
Figure 2. Inventory level with FIFO policy 

 
The FIFO policy is a phenomenon opposite to the LIFO policy. In this system, items in OW which are stored first will be completely 

utilised first. Figure 2 illustrates the production system of the two-warehouse model with FIFO policy.  

 

Similarly, the production cycle begins at 𝒕𝟎 where deterioration and fulfilment of demand occurs simultaneously in the first 

interval. Since the production process is assumed to be imperfect, defective items are produced in this interval. The defectives are 
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separated and kept aside to be sent to RW at 𝒕𝟏. The differential equation representing the change of inventory level in OW during 

the interval 𝒕𝟎 ≤ 𝒕 ≤ 𝒕𝟏 is denoted by: 

 
𝑑𝐼1(𝑡)

𝑑𝑡
= 𝑃 − 𝑥 − 𝑓(𝑡) − 𝛼𝐼1(𝑡)                  ;      𝑡0 ≤ 𝑡 ≤ 𝑡1                            (22) 

 
By solving differential equation (22) with the initial condition, 𝑰𝟏(𝒕𝟎) = 𝟎, the inventory level in this interval is given as: 

 

𝐼1(𝑡) = [
(𝑃 − 𝑥 − 𝑎)

𝛼
+

𝑏

𝛼2] (1 − 𝑒−𝛼𝑡) −
𝑏𝑡

𝛼
                                                    (23) 

 
While defective items were sent to RW to undergo rework process, items in OW are kept idle or on standby during the interval 

𝒕𝟏 ≤ 𝒕 ≤ 𝒕𝟐. However, due to deterioration, items will deplete at the rate 𝜶 in which the change of inventory level is represented 

by: 

 
𝑑𝐼2(𝑡)

𝑑𝑡
= −𝛼𝐼2(t)                                             ;      𝑡1 ≤ 𝑡 ≤ 𝑡2                            (24) 

 
Considering the boundary condition 𝑰𝟐(𝒕𝟏) = 𝑾, where 𝑾 represents the maximum capacity of OW, we have the following 

inventory level: 

 
𝐼2(𝑡) = 𝑊𝑒𝛼(𝑡1−𝑡)                                                                                                     (25) 

 
The rework process in RW begins in the interval 𝒕𝟏 ≤ 𝒕 ≤ 𝒕𝟐, in which items are depleted due to deterioration and fulfilment of 

demand. The change of inventory level during this interval is represented by: 

 
𝑑𝐼3(𝑡)

𝑑𝑡
= 𝑅 − 𝑓(𝑡) − 𝛼𝐼3(t)                          ;      𝑡1 ≤ 𝑡 ≤ 𝑡2                             (26) 

 
Considering the boundary condition 𝑰𝟑(𝒕𝟏) = 𝟎, the inventory level in this interval is denoted by:  

 

𝐼3(𝑡) =
1

𝛼
(𝑅 − 𝑎 − 𝑏𝑡) +

𝑏

𝛼2 − [
1

𝛼
(𝑅 − 𝑎 − 𝑏𝑡1) +

𝑏

𝛼2] 𝑒𝛼(𝑡1−𝑡)                (27) 

 
The rework process in RW ends at 𝒕𝟐 where these items will be on standby while demands are fulfilled by items in OW during the 

interval 𝒕𝟐 ≤ 𝒕 ≤ 𝒕𝟑. However, items in RW will continue to deplete due to deterioration only. The change of inventory level during 

this interval is denoted by: 

 
𝑑𝐼4(𝑡)

𝑑𝑡
= −𝛼𝐼4(t)                                             ;      𝑡2 ≤ 𝑡 ≤ 𝑡3                             (28) 

 
Considering the boundary condition 𝑰𝟒(𝒕𝟐) = 𝑸, the inventory level in this interval is denoted by:  

 

𝐼4(𝑡) = 𝑄𝑒𝛼(𝑡2−𝑡)                                                                                                       (29) 
 

Simultaneously, items stored in OW will begin depleting to fulfil demand in the interval 𝒕𝟐 ≤ 𝒕 ≤ 𝒕𝟑  until they are fully depleted at 

𝒕𝟑. The change of inventory level in this interval is represented by: 

  
𝑑𝐼5(𝑡)

𝑑𝑡
= −𝑓(𝑡) − 𝛼𝐼5(t)                                ;      𝑡2 ≤ 𝑡 ≤ 𝑡3                            (30) 

 
Considering the boundary condition 𝑰𝟓(𝒕𝟑) = 𝟎, the inventory level in this interval is denoted by: 

 

𝐼5(𝑡) = [
1

𝛼
(𝑎 + 𝑏𝑡3) −

𝑏

𝛼2
] 𝑒𝛼(𝑡3−𝑡) −

(𝑎 + 𝑏𝑡)

𝛼
+

𝑏

𝛼2
                                    (31) 
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Once all items in OW are fully depleted at 𝒕𝟑, demand will be fulfilled by the remaining inventory in RW during the last interval, 

while deterioration occurs simultaneously. The production cycle ends at 𝑻, in which the inventory will be fully depleted. The change 

in the inventory level is denoted by: 

 
𝑑𝐼6(𝑡)

𝑑𝑡
= −𝑓(𝑡) − 𝛼𝐼6(t)                                ;      𝑡3 ≤ 𝑡 ≤ 𝑇                             (32) 

 
Considering the boundary condition 𝑰𝟔(𝑻) = 𝟎, the inventory level in this interval is denoted by: 

 

𝐼6(𝑡) = [
(𝑎 + 𝑏𝑇)

𝛼
−

𝑏

𝛼2] 𝑒𝛼(𝑇−𝑡) −
(𝑎 + 𝑏𝑡)

𝛼
+

𝑏

𝛼2                                              (33) 

 
The maximum inventory of OW, 𝑾, is governed by equation 𝑾 = 𝑰𝟏(𝒕𝟏). Hence, we have: 

 

𝑊 = [
(𝑃 − 𝑥 − 𝑎)

𝛼
+

𝑏

𝛼2
] (1 − 𝑒−𝛼𝑡1) −

𝑏𝑡1

𝛼
                                                       (34) 

 
and the maximum inventory of RW, 𝑸, is governed by equation 𝑸 = 𝑰𝟑(𝒕𝟐), where: 

 

𝑄 =
1

𝛼
(𝑅 − 𝑎 − 𝑏𝑡2) +

𝑏

𝛼2 − [
1

𝛼
(𝑅 − 𝑎 − 𝑏𝑡1) +

𝑏

𝛼2] 𝑒𝛼(𝑡1−𝑡2)                     (35) 

 
Next, let 𝑨𝒊 denote the time-weighted inventory for each interval, where 𝒊 = 𝟏, 𝟐, … , 𝟔, and it represents the amount of inventory 

under the curve 𝑰𝒊(𝒕). The following are the respective equations for 𝑨𝒊 in the corresponding intervals: 

 

In the interval 𝒕𝟎 ≤ 𝒕 ≤ 𝒕𝟏, 

 

𝐴1 = ∫ 𝐼1(𝑡)
𝑡1

0

𝑑𝑡 

     = [
(𝑃 − 𝑥)

𝛼
+

𝑏

𝛼2
] 𝑡1 −

1

𝛼
(𝑎𝑡1 +

𝑏

2
𝑡1

2) + (
𝑃 − 𝑥 − 𝑎

𝛼2
+

𝑏

𝛼3
) (𝑒−𝛼𝑡1 − 1)                                   (36) 

 
In the interval 𝒕𝟏 ≤ 𝒕 ≤ 𝒕𝟐, for OW and RW, respectively 

 

𝐴2 = ∫ 𝐼2(𝑡)𝑑𝑡 =
𝑊

𝛼
[1 − 𝑒𝛼(𝑡1−𝑡2)]                                                                                                        (37)

𝑡3

𝑡1

 

 

𝐴3 = ∫ 𝐼3(𝑡)𝑑𝑡
𝑡2

𝑡1

 

      = [
𝑅

𝛼
+

𝑏

𝛼2] (𝑡2 − 𝑡1) +
1

𝛼
[(𝑎𝑡1 +

𝑏

2
𝑡1

2) − (𝑎𝑡2 +
𝑏

2
𝑡2

2)] 

                        + [
1

𝛼2
(𝑅 − 𝑎 − 𝑏𝑡1) +

𝑏

𝛼3] [𝑒𝛼(𝑡1−𝑡2) − 1]                                                                                          (38) 

 

In the interval 𝒕𝟐 ≤ 𝒕 ≤ 𝒕𝟑, for OW and RW, respectively 

 

𝐴4 = ∫ 𝐼4(𝑡)𝑑𝑡 =
𝑄

𝛼
[1 − 𝑒𝛼(𝑡2−𝑡3)]                                                                                                          (39)

𝑡3

𝑡2

 

 

𝐴5 = ∫ 𝐼5(𝑡)𝑑𝑡
𝑡3

𝑡2

 

      =
𝑏

𝛼2
(𝑡3 − 𝑡2) + 

1

𝛼
[(𝑎𝑡2 +

𝑏

2
𝑡2

2) − (𝑎𝑡3 +
𝑏

2
𝑡3

2)] 

      + [
1

𝛼2
(𝑎 + 𝑏𝑡3) −

𝑏

𝛼3] [𝑒𝛼(𝑡3−𝑡2) − 1]                                                                                                  (40) 

 
In the interval 𝒕𝟑 ≤ 𝒕 ≤ 𝑻, 
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𝐴6 = ∫ 𝐼6(𝑡)𝑑𝑡
𝑇

𝑡3

 

      =
𝑏

𝛼2
(𝑇 − 𝑡3) +

1

𝛼
[(𝑎𝑡3 +

𝑏

2
𝑡3

2) − (𝑎𝑇 +
𝑏

2
𝑇2)] 

     + [
1

𝛼2
(𝑎 + 𝑏𝑇) −

𝑏

𝛼3] [𝑒𝛼(𝑇−𝑡3) − 1]                                                                                                                                  (41) 

 
Similar to LIFO policy, we have:  

 
𝑥𝑡1 = 𝑅(𝑡2 − 𝑡1) 

  𝑡2 =
(𝑅 + 𝑥)𝑡1

𝑅
                                                                                                   (42) 

 
The total inventory holding cost is the sum of the holding costs in both OW and RW, which is given as: 

 

𝐻𝐶 =
ℎ1

𝑇
(𝐴1 + 𝐴2 + 𝐴5) +

ℎ2

𝑇
(𝐴3 + 𝐴4 + 𝐴6) 

=
ℎ1

𝑇
{
1

𝛼
[(𝑃 − 𝑥)𝑡1 − (𝑎𝑡1 +

𝑏

2
𝑡1

2) − (𝑎𝑡3 +
𝑏

2
𝑡3

2) + (𝑎𝑡2 +
𝑏

2
𝑡2

2) −
1

𝛼2
(𝑎 + 𝑏𝑡2)

+
𝑏

𝛼3 −
𝑊

𝛼
𝑒𝛼(𝑡1−𝑡2) + [

1

𝛼2
(𝑎 + 𝑏𝑡3) −

𝑏

𝛼3] 𝑒𝛼(𝑡3−𝑡2)]}

+
ℎ2

𝑇
{
1

𝛼
[𝑅(𝑡2 − 𝑡1) + (𝑎𝑡1 +

𝑏

2
𝑡1

2) − (𝑎𝑡2 +
𝑏

2
𝑡2

2) + (𝑎𝑡3 +
𝑏

2
𝑡3

2) − (𝑎𝑇 +
𝑏

2
𝑇2)]

−
1

𝛼2
(𝑎 + 𝑏𝑡3) +

𝑏

𝛼3 −
𝑄

𝛼
𝑒𝛼(𝑡2−𝑡3) + [

1

𝛼2
(𝑎 + 𝑏𝑇) −

𝑏

𝛼3] 𝑒𝛼(𝑇−𝑡3)}                                                                      (43) 

 
The deteriorating cost per unit time is given by: 

 

𝐷𝐶 =
𝑐𝐷𝛼

𝑇
(𝐴1 + 𝐴2 + 𝐴3 + 𝐴4 + 𝐴5 + 𝐴6) 

=
𝑐𝐷

𝑇
{𝑃𝑡1 − (𝑎𝑇 +

𝑏

2
𝑇2) −

1

𝛼
(𝛼 + 𝑏𝑡2) −

1

𝛼
(𝑎 + 𝑏𝑡3) +

2𝑏

𝛼2 − 𝑊𝑒𝛼(𝑡1−𝑡2) − 𝑄𝑒𝛼(𝑡2−𝑡3)

+ [
1

𝛼
(𝑎 + 𝑏𝑡3) −

𝑏

𝛼2
] 𝑒𝛼(𝑡3−𝑡2) + [

1

𝛼
(𝑎 + 𝑏𝑇) −

𝑏

𝛼2
] 𝑒𝛼(𝑇−𝑡3)}                                                                                  (44) 

 
Finally, 𝑻𝑹𝑪∗ for FIFO policy is: 

 

𝑇𝑅𝐶(𝑡1, 𝑡3, 𝑇) =
𝑆

𝑇
+

𝑐𝑃𝑃𝑡1

𝑇
+

𝑐𝑅𝑥𝑡1

𝑇
+

ℎ1

𝑇
{
1

𝛼
[(𝑃 − 𝑥)𝑡1 − (𝑎𝑡1 +

𝑏

2
𝑡1

2) + (𝑎𝑡2 +
𝑏

2
𝑡2

2) − (𝑎𝑡3 +
𝑏

2
𝑡3

2)]

−
1

𝛼2
(𝑎 + 𝑏𝑡2) +

𝑏

𝛼3
−

𝑊

𝛼
𝑒𝛼(𝑡1−𝑡2) + [

1

𝛼2
(𝑎 + 𝑏𝑡3) −

𝑏

𝛼3
] 𝑒𝛼(𝑡3−𝑡2)}

+
ℎ2

𝑇
{
1

𝛼
[𝑅(𝑡2 − 𝑡1) + (𝑎𝑡1 +

𝑏

2
𝑡1

2) − (𝑎𝑡2 +
𝑏

2
𝑡2

2) + (𝑎𝑡3 +
𝑏

2
𝑡3

2)

− (𝑎𝑇 +
𝑏

2
𝑇2)] −

1

𝛼2
(𝑎 + 𝑏𝑡3) +

𝑏

𝛼3 −
𝑄

𝛼
𝑒𝛼(𝑡2−𝑡3) + [

1

𝛼2
(𝑎 + 𝑏𝑇) −

𝑏

𝛼3] 𝑒𝛼(𝑇−𝑡3)}

+
𝑐𝐷

𝑇
{𝑃𝑡1 − (𝑎𝑇 +

𝑏

2
𝑇2) −

1

𝛼
(𝑎 + 𝑏𝑡2) −

1

𝛼
(𝑎 + 𝑏𝑡3) +

2𝑏

𝛼2 − 𝑊𝑒𝛼(𝑡1−𝑡2)

− 𝑄𝑒𝛼(𝑡2−𝑡3) + [
1

𝛼
(𝑎 + 𝑏𝑡3) −

𝑏

𝛼2] 𝑒𝛼(𝑡3−𝑡2) + [
1

𝛼
(𝑎 + 𝑏𝑇) −

𝑏

𝛼2] 𝑒𝛼(𝑇−𝑡3)}                                                      (45) 

 
We have utilised the same approach as in Section 2.3 in which the optimal solution of 𝑻𝑹𝑪(𝒕𝟏, 𝒕𝟑, 𝑻) is obtained numerically as 

discussed in the next section.
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2.5 Solution Procedure 

Numerical algorithms for constrained nonlinear 
optimisation can be widely categorised into gradient-based 
methods and direct search methods. The first derivatives 
(gradients) or second derivatives (Hessians) information is 
used in the gradient search methods, while derivative 
information is not used in direct search method (Wolfram, 
2020).  

𝑻𝑹𝑪∗ is a non-polynomial equation, where its second 
derivative with respect to 𝒕𝟏, 𝒕𝟑, and 𝑻 is hard to 
differentiate. Hence, a closed-form solution could not be 
derived and an optimal solution cannot be guaranteed. In 
this study, generalised reduced gradient (GRG) has been 
chosen as the solving method. Hence, the Microsoft Excel 
Solver is used as a solution tool. GRG converts the 
constrained problem into an unconstrained one. The 
extended reduced gradient method, known as the GRG 
method, accommodates nonlinear inequality constraints. 
Using this method, a search direction is found in which the 
current active constraints remain precisely active for any 
small move. 

 
The following algorithm is used: 
 

1. Set 𝒕𝟎 = 𝟎. 
 

2. Determine the values of 𝒕𝟏, 𝒕𝟑, and 𝑻, which 
satisfy the following constraints: 
For LIFO, 
𝑰𝟏(𝒕𝟎) = 𝟎, 𝑰𝟏(𝒕𝟏) = 𝑰𝟐(𝒕𝟏), 𝑰𝟑(𝒕𝟏) =
𝟎, 𝑰𝟒(𝒕𝟑) = 𝟎, 𝑰𝟐(𝒕𝟑) = 𝑰𝟓(𝒕𝟑) and 𝑰𝟓(𝑻) = 𝟎 

 
For FIFO, 
𝑰𝟏(𝒕𝟎) = 𝟎, 𝑰𝟏(𝒕𝟏) = 𝑰𝟐(𝒕𝟏), 𝑰𝟑(𝒕𝟏) =
𝟎, 𝑰𝟒(𝒕𝟑) = 𝑰𝟔(𝒕𝟑), 𝑰𝟐(𝒕𝟐) = 𝑰𝟓(𝒕𝟐), 𝑰𝟓(𝒕𝟑) = 𝟎 
and 𝑰𝟔(𝑻)  =  𝟎 

3. Compute 𝒕𝟐 =
(𝑹+𝒙)𝒕𝟏

𝑹
. 

4. Compute 𝑻𝑹𝑪∗ using equations (21) and (45) 
for LIFO and FIFO respectively. 

 

Aside from the GRG method, we have utilised the 
Wolfram Language function, which solves for numeric local 
constrained optimisation, which is known as the 
FindMinimum function. This function uses the interior point 
methods to find the solution to problems with constraints 
(Wolfram, 2020). We have utilised the built-in function to 
verify our results and we note that both the Microsoft Excel 
Solver and Mathematica software, provide the same results.  

 
2.6 Numerical Example and Sensitivity Analysis 

The following numerical example has been considered to 
provide an illustration of the proposed policies in this study. 
The parameters used in the model are 𝑷 = 𝟑𝟎𝟎𝟎, 𝑹 =
𝟏𝟎𝟎𝟎, 𝒙 = 𝟓𝟎𝟎, 𝜶 = 𝟎. 𝟎𝟒, 𝒂 = 𝟓𝟓𝟎, and 𝒃 = 𝟐𝟎𝟎. The 
costs involved in this model are given as follows, 𝑺 = $𝟏𝟎𝟎𝟎, 
𝒄𝑷 = $𝟐. 𝟎𝟎, 𝒄𝑹 = $𝟑. 𝟎𝟎, 𝒅 = $𝟐. 𝟓𝟎, 𝒉𝟏 = $𝟏. 𝟓𝟎, and 
𝒉𝟐 = $𝟐. 𝟓𝟎. 

Based on the parameters considered, the optimal 
solution of 𝑻𝑹𝑪∗ for the LIFO policy is $3047.39, and it is 
achieved at 𝒕𝟏

∗ = 𝟎. 𝟐𝟓𝟓𝟔, 𝒕𝟑
∗ = 𝟎. 𝟒𝟔𝟎𝟗, and 𝑻∗ = 𝟏. 𝟏𝟑𝟓𝟒 

(correct to four decimal places).  
On the other hand, using the same parameters as LIFO 

policy, the optimal solution of 𝑻𝑹𝑪∗ for the FIFO policy is 
$3076.34, which is achieved at 𝒕𝟏

∗ = 𝟎. 𝟐𝟓𝟏𝟔, 𝒕𝟑
∗ = 𝟏. 𝟎𝟓𝟖𝟖, 

and 𝑻∗ = 𝟏. 𝟏𝟐𝟎𝟑 (correct to four decimal places).  
Table 1 shows the changes in 𝑻𝑹𝑪∗ as the parameters are 

reduced and increased by 25% in both the LIFO and FIFO 
systems. The changes in the total number of items produced, 
defective items, demand, and deteriorated items are 
presented in Table 2. 

We note that the results obtained are similar in both 
systems in which the value of 𝑻𝑹𝑪∗ increases as the 
parameters increased. This behaviour is true for all 
parameters except when the value of 𝑷 is increased. Since 
the increment in 𝑷 shall mean that the items are produced 
at a faster rate in a shorter period, we note that fewer items 
are being produced. In return, fewer number of defective 
items are produced in the system. The decrement of the 
processing, rework processing, and holding costs in RW 
result in the decrement of 𝑻𝑹𝑪∗. 

 

Table 1.  Comparison of the difference in the 𝑇𝑅𝐶∗ under varying parameters. 

Parameters 

  LIFO  FIFO 

−25%, 

Optimal, 

+25% 

 𝑻𝑹𝑪∗ 𝒕𝟏
∗  𝒕𝟑

∗  𝑻∗ 

 

𝑻𝑹𝑪∗ 𝒕𝟏
∗  𝒕𝟑

∗  𝑻∗ 

𝑷 

2250  3083.67 0.36 0.63 1.19  3113.57 0.35 1.09 1.17 

3000  3047.39 0.26 0.46 1.14  3076.34 0.25 1.06 1.12 

3750  3020.29 0.20 0.36 1.11  3046.72 0.20 1.05 1.10 

𝑹 

750  3040.90 0.26 0.46 1.14  3054.10 0.26 1.11 1.14 

1000  3047.39 0.26 0.46 1.14  3076.34 0.25 1.06 1.12 

1250  3051.26 0.25 0.46 1.13  3089.49 0.25 1.03 1.11 

𝒙 

375  2972.45 0.26 0.41 1.14  2995.95 0.25 1.08 1.12 

500  3047.39 0.26 0.46 1.14  3076.34 0.25 1.06 1.12 

625  3121.25 0.26 0.51 1.14  3154.57 0.25 1.04 1.12 

𝜶 
0.03  3031.63 0.26 0.46 1.15  3060.93 0.25 1.07 1.13 

0.04  3047.39 0.26 0.46 1.14  3076.34 0.25 1.06 1.12 
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0.05  3063.01 0.25 0.46 1.12  3091.63 0.25 1.05 1.11 

𝒂 

412.5  2637.03 0.21 0.43 1.17  2672.17 0.21 1.06 1.15 

550.0  3047.39 0.26 0.46 1.14  3076.34 0.25 1.06 1.12 

687.5  3440.62 0.30 0.50 1.11  3460.15 0.30 1.07 1.11 

𝒃 

150  2951.18 0.26 0.48 1.21  2982.44 0.26 1.12 1.19 

200  3047.39 0.26 0.46 1.14  3076.34 0.25 1.06 1.12 

250  3136.46 0.25 0.45 1.08  3163.42 0.25 1.01 1.06 

 

 

Table 2.  Analysis of change in various parameters on the total inventory items. 

      LIFO  FIFO 

Parameters 

−25%, 

Optimal, 

+25% 

  

Total 

Items 

Produced 

Total 

Defectives 

Total 

Demand 

Total 

Deteriorated 

Items 

 

Total 

Items 

Produced 

Total 

Defectives 

Total 

Demand 

Total 

Deteriorated 

Items 

𝑷 

2250  807.82 179.51 795.24 12.57  795.75 176.83 783.51 12.24 

3000  766.82 127.80 753.37 13.45  754.71 125.78 741.65 13.06 

3750  747.80 99.71 733.92 13.88  736.22 98.16 722.73 13.49 

𝑹 

750  771.66 128.61 758.16 13.49  768.02 128.00 754.64 13.38 

1000  766.82 127.80 753.37 13.45  754.71 125.78 741.65 13.06 

1250  764.38 127.40 750.95 13.43  747.10 124.52 734.23 12.88 

𝒙 

375  768.19 96.02 754.40 13.79  758.15 94.77 744.70 13.46 

500  766.82 127.80 753.37 13.45  754.71 125.78 741.65 13.06 

625  766.22 159.63 753.13 13.09  752.52 156.78 739.85 12.67 

𝜶 

0.03  772.56 128.76 762.27 10.29  760.10 126.68 750.11 9.99 

0.04  766.82 127.80 753.37 13.45  754.71 125.78 741.65 13.06 

0.05  760.73 126.79 744.27 16.46  749.47 124.91 733.46 16.02 

𝒂 

412.5  629.74 104.96 617.34 12.40  615.37 102.56 603.48 11.89 

550.0  766.82 127.80 753.37 13.45  754.71 125.78 741.65 13.06 

687.5  904.79 150.80 890.55 14.24  897.59 149.60 883.56 14.03 

𝒃 

150  788.97 131.50 774.26 14.71  774.37 129.06 760.16 14.21 

200  766.82 127.80 753.37 13.45  754.71 125.78 741.65 13.06 

250   748.97 124.83 736.52 12.45   739.00 123.17 726.86 12.15 

 
2.7 Comparison between LIFO and FIFO policies 

 
In general, the 𝑇𝑅𝐶∗ of the LIFO system is lower than 

the 𝑇𝑅𝐶∗ of the FIFO system, where 𝑇𝑅𝐶𝐿𝐼𝐹𝑂
∗ =

 $3047.39 < 𝑇𝑅𝐶𝐹𝐼𝐹𝑂
∗ = $3076.34. Based on the sensitivity 

analysis of both policies, the following are the features that 
we have identified. 

We observed that changes in the value of 𝑡1 affect the 
number of total produced items and defective items, while 
changes in the value of 𝑇 affect the total demand in the 
system. Note that in FIFO policy, items that are stored in OW 
will be utilised or distributed first, followed by items in RW. 
Hence, items are stored longer in RW, which in turn results 
in a higher holding cost.  

Referring to the optimal solution presented, we can 
see that 𝑇𝑅𝐶∗ for the FIFO policy is higher than the 𝑇𝑅𝐶∗ in 
the LIFO policy. Hence, we can conclude that given the same 
value of parameters, the LIFO system has a lower 𝑇𝑅𝐶∗. 
 
 

3. Conclusion 
 
3.1 Conclusion and Further Research 
 

The total relevant cost,  𝑇𝑅𝐶∗, for both policies is a 
nonlinear equation, where its second derivative with respect 
to 𝑡1, 𝑡3, and 𝑇 is complicated. Hence, we have utilised the 
optimisation tools in Microsoft Excel Solver and 
Mathematica to obtain an optimal solution for the proposed 
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model. According to the results obtained, we observed that 
the equation for 𝑇𝑅𝐶∗ is convex at the optimal values of 𝑡1, 
𝑡3, and 𝑇. In other words, the optimal solution of 𝑇𝑅𝐶∗ is 
minimum at the aforementioned optimal times. A sensitivity 
analysis was conducted for both policies to provide 
illustration on the derived results. In addition, we also note 
that several studies such as Sett et al. (2012) and Lee (2006) 
to name a few, derived similar results as obtained in this 
paper.  

Several limitations were identified while conducting 
the study. First, the assumption that deterioration rate is 
constant is unrealistic. Deterioration rates may be affected 
by environmental factors and workmanship of the items 
produced. The type of deterioration rates may be further 
explored as different storage space may have different 
facilities, which may result in the difference in the 
deterioration rate. Next, shortages and backlog are also 
commonly present in the market when demand is higher 
than supply. Hence, exploring this factor further would be 
beneficial in planning the right number of items to be 
produced to ensure fulfilment of demand. 
 
3.2 Managerial Insights 

 
The proposed model in this paper may provide 

managerial insights to aid manufacturers in optimising the 
total cost of their production system when managing two 
storage facilities involving deteriorating items. 

Our approach in incorporating a linearly increasing 
demand rate would allow inventory operators to plan their 
production accordingly when launching new items into the 
market. We observe that a newly launched product such as 
cosmetics, fashion items, and mobile phones experience a 
linearly increasing demand rate for a certain period of time 
upon being introduced into the market. 

Furthermore, introducing an imperfect production 
process in the manufacturing system is a more realistic 
condition. In some instances, rework process is a more cost-
efficient approach rather than producing scrap and disposing 
defective items. Besides, we have assumed that the rework 
process is only carried out in RW. This would be beneficial to 
manufacturers with limited number of machines as they are 
able to focus solely on production process first, prior to 
repairing the defectives. 
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