
Malaysian Journal of Computer Science, Vol. 13 No. 1, June 2000, pp. 65-75

65

A VHDL MODULE GENERATOR FOR FAST PROTOTYPING OF MULTIMEDIA ASICS

Mohamed Khalil Hani and Kah Hoe Koay
MiCE Department, Faculty of Electrical Engineering

Universiti Teknologi Malaysia
81310 UTM Skudai, Malaysia

Tel.: 607-5505003
Fax: 607-5566272

email: khalil@suria.fke.utm.my
koaykh@tm.net.my

ABSTRACT

This paper presents an electronic design automation (EDA)
software for generating synthesizable VHDL modules for
hardware applications of multimedia data processing. The
tool provides a rapid-prototyping design environment by
enabling dynamic storage and retrieval of reusable
modules, parameterized design entry, hierarchical design
exploration, list-based component interface insertion, and
block diagram view of designs. This produces a design
environment, which enables fast design development cycle
by improving design productivity to meet the fast evolving
standards of multimedia formats. A test case design of a
JPEG decoder has been built using the tool.
Implementation of the design in FPGA has proven the
capability of the tool in handling large and complex
designs.

Keywords: VHDL, module generator, design entry,
EDA, CAD, rapid-prototyping, para-
meterized, JPEG decoder

1.0 INTRODUCTION

Hardware designers are facing increasingly challenging
tasks in developing growing complex systems within
shrinking time-to-market windows for shorter product life
cycles [1]. In a design process, the design entry stage is
time consuming, cumbersome and error prone, which
represents a significantly large portion of the overall design
cycle. A gap remains between the output of a system-level
design tool and the input to the top-down ASIC
(Application-Specific Integrated Circuit) design process
[1]. The output of the system-level tool is a verified
algorithm, and the input to the ASIC design process is a
complete structural-level VHDL (VHSIC Hardware
Description Language [2]) description of an architecture
implementing the algorithm. Design engineers often need
to evaluate and choose among different architectural
alternatives (for example, parallelism, pipelining, resource
sharing and numeric formats) before obtaining the best
solution that resolves speed, size and power consumption
tradeoffs. Current EDA tools lack this high-level modeling
facility for users to evaluate design alternatives in a fast and
efficient way.

Another shortcoming in many EDA tools is that they do not
support dynamic creation of reusable components, though
most provide a component module library in fixed, template
or wizard form to avoid designing from scratch. Current
EDA software also uses VHDL as text-based design entry
representation, which is especially suitable for handling
complex digital systems. However, unlike schematic
design entry that facilitates pictorial hierarchical design,
text-based representation is harder for users to view the
whole picture of a design and hence make it more difficult
to manipulate the design hierarchy.

2.0 VHDL MODULE GENERATOR

A VHDL Module Generator is proposed to provide a
solution to the problems stated. It is a general-purpose
software design entry tool that provides a rapid-prototyping
design environment. The prototyping framework meets the
following design objectives:
1. Improve support of hierarchical and modular design

methodologies.
2. Improve support of reuse and incremental development

by later-bindings through parameterisation and
dynamic module library.

3. Preserve capabilities for automatic synthesis.

2.1 Overview

Fig. 1 shows the conceptual diagram of the software. The
main project window is the design hierarchy explorer. As
VHDL design entry lacks the convenience for users to
explore design hierarchy, the tree view design hierarchy
explorer is provided to facilitate hierarchical and modular
design methodology. Users can create top-down, bottom-
up or mixed design conveniently using the design hierarchy
explorer. Each object in the tree view is a design module,
which is always associated with a VHDL file. Each object
is associated with a parameter list, a port interface list, and
a block diagram. The software allows parameterised
VHDL entry where users can insert and modify data
widths, data types as well as architectural options easily
without changing the VHDL code manually but through the
parameter editor window. The parameterisable feature
enables creation of dynamic module library, where users
can create user-defined library modules for future reuse.

Hani and Koay

66

Fig. 1: VHDL Module Generator

The interface editor window enables insertion,
modification, and viewing of port interface of VHDL
entities. This feature eliminates VHDL text coding of port
list. Block diagram editor window provides a more
intuitive and realistic pictorial view of designs. The output
of the software is synthesisable VHDL code. The software
will compile the VHDL source codes to make them
synthesisable.

The VHDL Module Generator was developed using
Microsoft Visual C++ version 5.0. The software is
designed to run in Microsoft Windows 95/98/NT/2000
platforms in x86 PC (Personal Computer) systems. The
synthesisable VHDL code output from the VHDL Module
Generator is synthesised using FPGA Express [3] from
Synopsys Inc. The software is integrated in Xilinx
Foundation Series 1.5i implementation tool from Xilinx
Inc.

A reconfigurable computing platform is employed to build
hardware prototypes, where an FPGA (Field Programmable
Gate Array) is mounted on an ISA (Industry Standard
Architecture) card (APS-X208 from APS, Inc.) in a PC slot.
The FPGA used is XC4052XLA from Xilinx, which has
typical logic gate count of 52k. Programming and inter-
facing the FPGA with the computer is made seamlessly
easy using the platform. This FPGA-based reconfigurable
computing platform provides facility to download prototype
designs to FPGA, then design verifications can be done in

real-time through the established interface between the
FPGA and CPU. It eliminates conventional slow
verification process, which is done in software simulation.

The following sub-sections describe some of the major
features of the VHDL Module Generator, which include
parameterised design, dynamic library, hierarchical design
exploration, automatic VHDL editing and compilation,
interface port editor, and block diagram editor.

2.2 Parameterised Design Entry

Parameterised design entry is one of the main features of
the VHDL Module Generator. A number of researchers [1,
4, 5] suggested this. Modules or components can be
described in a generalised form and made specific by using
certain parameters. Take the case of a simple example like
counter. A generalised counter can be made and specified
with parameters like the counter width, its initial value, stop
value, increment step, and architecture options, such as
binary or one-hot encoding.

By using generic clauses, configuration statements,
enumerations, etc., generalised components can be
described in VHDL code. Furthermore, multiple levels of
parameter passing can be done as well. The VHDL Module
Generator takes advantage of this feature and further
enhances it to windows user interface. The software
searches through the VHDL code for all parameterisable

Synthesizable
VHDL

VHDL Module generator

Module
Library

User VHDL
entry

Parameter Editor

Interface Editor

Design Hierarchy Explorer

Block Diagram Editor

A VHDL Module Generator for Fast Prototyping of Multimedia ASICs

67

elements and extracts them to a parameter editor, where
users can view and edit the parameters in the software
without opening the VHDL file. Thus, it makes design
work easier and faster for hardware designers. Fig. 2 shows
an example of parameter extraction process. On the other
way round, users can insert new parameters to a module
through the software’s user interface, then the software will
generate the corresponding VHDL code automatically.

entity Adder is
 generic(

 DataWidth: INTEGER := 8);

 port (

 A,B: in AdderType(DataWidth-1 downto 0);

 SUM: out AdderType(DataWidth downto 0)
);

end Adder;

architecture SpeedOptimized of Adder is

begin
 -- Speed optimized adder architecture here

end SpeedOptimized;

architecture AreaOptimized of Adder is
begin

 -- Area optimized adder architecture here

end AreaOptimized;

Numeric parameter

Data type parameter

Architecture option
parameter

Parameter List

Entity & architecture body

Fig. 2: Parameter extraction

Mathur [6] argued that parameterisation makes the VHDL
code more complex and harder to understand. It also takes
longer time during the synthesis process comparing to fixed
designs. However, considering that a design usually
involves repeated modifications, (for example, changing a
bus width could involve modifications in several different
VHDL entities), designers would have to restudy the codes
to find where the changes would have to be made, which
could take an even longer time. If designers have created
parameterised designs from the beginning, future
modification work is relatively easy. In other words,
parameterised design entry enables rapid prototyping of
designs.

Among supported parameters are numeric parameter, data
type parameter, architecture option parameters, and logic
parameter. Users can insert parameters either through
manual VHDL coding or through the software’s user
interface. Fig. 3 shows a practical example of parameter
list for a data register. The following paragraphs discuss
each type of parameter in detail.

Fig. 3: Parameter list for a data register

Numeric parameter describes data width, number range, or
any other numeric values used in VHDL code. Numeric
parameters are stated in generic clause at entity declaration
part of a component. Only integer numbers are supported.
In Fig. 2, a numeric parameter called DataWidth with a
default value is stated in the code. Users can modify the
DataWidth value in the parameter editor. The user-defined
value will be inserted in the component declaration part at
its upper design hierarchy. The VHDL synthesiser in use
[3] supports this generic mapping.

Data type parameter can be used to specify signal types
like STD_LOGIC_VECTOR, UNSIGNED, SIGNED, or
others. This parameter is needed as there might be different
designs using different kind of data types, but the basic
components used could be independent of data type and
usable in different designs. The software extracts data type
parameter from three places in VHDL code: generic clause
similar to numeric parameter, port list at entity declaration,
and signal declaration at architecture declarative part, as
shown in the following listing. For parameterised data type
Type2 and Type3 in the example below, the software
checks whether they are common standard data types, if
not, the software will treat them as parameterised data
types.

entity Adder is
 generic(
 Type1: type := SIGNED
);
 port(
 A, B: in Type2(7 downto 0);
 SUM: out Type2(7 downto 0)
);
end Adder;

architecture Adder_arch of Adder is
 signal C: Type3(7 downto 0);
begin
 :
 :

Architecture option parameter provides flexibility for users
to choose different kinds of architectures of a component.
This permits designers to evaluate different kinds of
architectures quickly. In VHDL syntax, an entity body
could have several architecture bodies associated with it.
Configuration declaration or configuration specification is
used to specify which particular architecture to choose. In
Fig. 2, SpeedOptimised and AreaOptimised are two
architecture options for the entity Adder. They will be
extracted as architecture option parameter. The architecture
selected by users will be stated as configuration
specification at architecture declarative part of the upper
design hierarchy. However, VHDL synthesiser used [3]
does not recognise configuration specification. To com-
pensate this limitation, during compilation, only selected
architecture option is added to the compiled VHDL file.
Other architecture options are discarded.

Hani and Koay

68

Style parameter is very similar to architecture option
parameter. Only one architecture option parameter is
allowed in one module, but this is not practical enough as
parameterised designs often needs several independent
architecture option parameters. The style parameter solves
this limitation. As in Fig. 3, the architecture option
parameter has been used to select the style of reset signal.
The style parameter is used to select the style of chip enable
signal. The number of style parameter in a module is
unlimited. The style parameter is inserted after port
declaration in the entity body. An example is shown in
VHDL listing below. Enumeration type is used to define
style options. This is followed by a constant declaration of
the enumerated type. The constant name is the style
parameter name. The constant value denotes the selected
style parameter.

entity DataRegister is
 generic (
 ...
);
 port (
 ...
);
 type ENUM_ChipEnable is
 (HIGH, LOW, DontUse);
 constant ChipEnable: ENUM_ChipEnable
 := DontUse;
end DataRegister;

The style parameter can be used in two ways:
• Inside a process statement by using if statement:

if ChipEnable=DontUse then
 ...
 ...
end if;

• Generate statement:
G1: if ChipEnable=DontUse generate
 ...
 ...
end generate;

Logic parameter has two possible values only, either ‘0’ or
‘1’. This kind of parameter is useful in specifying active
logic level or edge of control signals, like active clock edge,
reset active level, enable active level, etc. In the example
code below, a logic parameter called ResetActive with a
default value is stated in the generic clause. STD_LOGIC
is used as the keyword. The software will extract it as logic
parameter. The generic clause with STD_LOGIC type is
not supported by VHDL synthesiser used [3]. The software
replaces the parameter with the selected logic directly into
the compiled VHDL code.

entity FlipFlop is
 generic(
 ResetActive: STD_LOGIC := ‘1’
);
 port(
 D, RST, CLK: in STD_LOGIC;
 Q: out STD_LOGIC
);
end FlipFlop;

Note parameter is used to write a one line comment or note
in the parameter list. An example usage is shown in the
second and third parameters in Fig. 3. In VHDL code, the
note parameter is expressed in generic clause using the
keyword “string” as shown below. The parameter is
enclosed with double quotes. When compiling the design,
the note parameter is removed.

generic (
 Author: string := "Koay Kah Hoe";
 Description: string := "A set of flip-flops";
 ...
);

Link parameter is used to provide linkage to other files that
are associated with the design. It could be any registered
file type. In Fig. 3, the fourth item is link parameter. When
users double click on this parameter, the software will
invoke default viewer or application for the file depending
on its file type. This parameter is useful in associating
documentation file to a design. In VHDL code, the link
parameter is expressed in generic clause using the keyword
“file” as shown below. The parameter is enclosed with
double quotes. When compiling the design, the link
parameter is removed.

generic (
 Documentation: file := "DataRegister.pdf";
 ...
);

2.3 Dynamic Module Library

From the fact that most systems share a number of basic
components, apart from providing a basic design
environment, many EDA tools often come with a set of
predefined component libraries [1, 4, 6]. This is very useful
for designers to avoid designing from scratch. There are
several forms of component libraries used in EDA tools, i.e.
fixed, template, or wizard form. Fixed library components
have least flexibility among these three methods, as users
need to modify the codes to suit the design. Template-
based components provide generic VHDL codes. Users can
easily modify components by changing available
parameters. It has slower synthesis run time and is prone to
create redundant hardware. dQdt [1] uses template-based
library. Wizard-based library creates VHDL codes after
users have specified the parameters, example of this is
HDLGen [6]. The resulted VHDL code is clean, because
specified parameters have been inserted directly into the
VHDL code. However, created code is fixed. If modifi-
cation is needed, users have to rerun the wizard.

Most EDA tools do not support dynamic library creation of
reusable components, only a fixed set of library modules is
provided. Like the HDLGen [6], the module generators are
compiled objects, which cannot be modified by the user. In
practical cases, hardware designers often need to reuse their
previous designs in other places. If the design entry tool
allows dynamic storage of library modules, future designs
could be speeded up by just retrieving previously designed

A VHDL Module Generator for Fast Prototyping of Multimedia ASICs

69

modules from library. dQdt [1] implemented an expanding
library of application-specific and parameterised VHDL
models, with model complexity ranging from single
arithmetic operators to large core functions to entire VLSI
chips.

In the VHDL Module Generator, dynamic module library is
empowered by parameterised design entry, as it provides a
method to create generalised modules that could be stored
as library modules. Thus, any design that is reusable can be
stored in module library dynamically.

Actually, modules in library are just a collection of VHDL
files. All parameter information is recorded in the VHDL
file itself. When a user stores a design into library, the
software will store all parameters currently defined in the
VHDL library file. If a design consists of several sub-
components in several files, when it is stored in library, the
software will combine them into one file in ascending
order. The next time when user gets the module from
library, only one object is shown, the sub-components in
lower hierarchy are hidden from users. Expanding the
original design hierarchy inside the library components is
not allowed.

The module library could be categorised as template-based
library, but with some differences from conventional
template-based library. Conventional template-based
library modules are used directly in the VHDL synthesiser,
whereas in this software, the design VHDL source code is
different from the output (synthesisable) VHDL code. The
software will remove parameterised elements from the code
and replace them with user-defined parameters during
compilation process. Only numeric and style parameters
stay parameterised with some insignificant synthesis run
time tradeoffs.

2.4 Hierarchical Design Exploration

Visualisation of the design hierarchy is implicitly provided
with schematic design entry. In contrast, VHDL-based
design entry lacks a convenient way for designers to
visualise the system structure, as all descriptions are written
in text. Some synthesis tools can create a hierarchical view
of design entities after elaborating a design, including
FPGA Express [3] and Active-HDL from Aldec Inc.
However, the view is shown only after designers have
completed their designs; even that, only when the design is
elaborated successfully. The VHDL source files are not
inserted in hierarchy order as the design, but just in a flat
file list. Clearly, it is not an intuitive way of organising
design sources.

The VHDL module generator overcomes the stated
weaknesses. In the software, the VHDL source files are
organised and displayed in the actual design hierarchy
through a window called design hierarchy explorer. Users
can view and manipulate the design hierarchy right from

the beginning of the design process using the design
hierarchy explorer.

Fig. 4 shows an example view of the design hierarchy
explorer. The first icon on the top of the view shows the
subfolder name (Test Project) where all the source files
reside. Except for the first icon, each icon in the view,
which is called module, represents a VHDL source file.
The module with the name ThisPackage in the example
contains a VHDL package. The filename always has the
same name with the package name, entity name, or
component name. TopLevel, Controller and DataPath in
the example are VHDL entities with architecture bodies.
Only one entity body is allowed inside each module of this
type.

Fig. 4: Example design hierarchy view

Counter and Pipelined_Multiplier in the example are library
modules. Inside each library module, there could be more
than one-entity bodies. The module name is the top-level
entity name of the library module. The internal entities of
library modules are hidden from users. RAM16X1 and
BUFGP are predefined modules. Predefined module can
either be a primitive component predefined in the synthesis
tool or an external component that is defined using other
representation, like schematic or netlist.

Among available functions of the design hierarchy explorer
includes add new, insert module, cut, copy, paste, move,
rename, and remove. By using these functions, users can
create top-down, bottom-up or mixed design methodologies
conveniently. All these functions are done in the graphical
user interface of the design hierarchy explorer. The
functions make design work much easier to manage.

2.5 VHDL Editing Automations

The VHDL Module Generator also provides automatic
editing of VHDL codes. When adding a new object using
the design hierarchy explorer, the software automatically
creates the basic entity body and architecture body for
users. When a new module is added under another module,
the software will automatically create a component
declaration and an instantiation example at the architecture
body of the upper hierarchy module. When some interface
ports of a component are changed, the corresponding
component declaration must be changed, too. This is a
tedious work if it is done manually. If a component is

Hani and Koay

70

removed using the design hierarchy explorer, its component
declaration is automatically removed by the software.
When renaming an object, the software automatically
changes its entity name, component declaration, and all
occurrences of the old name to the new name.

By having these automations, designers do not have to do
all these tedious works manually, and thus, can focus on the
actual design itself. The designers need only to make
interconnections among components and create actual
VHDL coding.

2.6 Interface Port Editing

The VHDL Module Generator provides a user-friendly
environment to create interface ports of modules. Fig. 5
shows an example of the interface port editor window. The
editor is divided into 4 columns. The “Name” column
specifies the port name of a signal. The software checks for
correct naming of signal names according to the VHDL
identifier naming standard. In Fig. 5, the “_RESET” signal
name is not allowed, thus the software displays a red knob
at the first column to denote wrong syntax.

Fig. 5: Interface port editor

The “Mode” column denotes signal’s port mode, there are
five kinds of modes: in, out, inout, buffer, and linkage. The
software creates an in-place list box for users to choose the
mode when the column is activated. Also, the software
uses colours as well to differentiate the modes. Users can
easily identify the mode of signals.

The “Data Type” column denotes the type of signal. It
could be standard data types like SIGNED, UNSIGNED,
STD_LOGIC, STD_LOGIC_VECTOR, or user defined
type. The software creates a combo box (a list box and an
edit box) when it is activated. Users can choose standard
data types from the list box or key in user defined type as
well. The software also checks for correct naming of type
according to standard identifier naming.

The “Range” column denotes the range of signal, if
applicable, depends on the data type. Data types like
SIGNED, UNSIGNED, INTEGER, etc. can be specified
with range, whereas other data types like STD_LOGIC and
BIT has no range. The software checks for standard data
types that allow range or not. For example, the LOAD
signal in Fig. 5 should not has range, thus a red knob is
shown.

If the syntax is correct for the whole row of port
declaration, the software will show a green knob. If the
port declaration is incomplete, the software will show an
orange knob. Common editing functions including cut,
copy, paste, move, insert, and remove are available to aid
users in creating or modifying interface ports.

2.7 Block Diagram Exploration

Design hierarchy is best viewed in tree view form, but for
design modules under the same hierarchy, tree view cannot
give any indication of how are the interconnections among
the modules. Instead, block diagram can best describe the
interrelations among these modules. The VHDL Module
Generator provides a block diagram editor for the purpose.
The software creates module blocks automatically which
are directly under the currently selected module. The
module blocks are coloured according to the type of
modules. Users can resize and move the blocks
accordingly. Connection lines can then be made by
selecting the first block and then point to the second block
using mouse. Fig. 6 to Fig. 9 are examples of block
diagrams created by the software.

The software can divide the text inside the block
intelligently to multiple lines when the block width is not
enough to contain the entire text in a single line. The path
of connection line between two blocks is created by the
software automatically after a user has made the link
between two blocks. The software finds the easiest path for
the user. The user can still modify the connection path as
needed. There are three line thickness options available. It
is used to roughly indicate the bus width of the signal in the
connection. Arrows at line ends can also be created to
indicate the flow of signal.

Users can insert text blocks and custom blocks to build a
complete block diagram. The software automatically
searches for interface ports’ name among the text blocks
inserted. If a text block matches an interface port name, the
text block is changed to interface port shape corresponding
to the port’s mode.

The block diagram is also another mean of design hierarchy
explorer. By double clicking on a block, block diagram of
the module under the clicked block will be opened. To go
up a level, simply double click on empty space in the block
diagram. By having the block diagram editor, users can
create documentation diagrams easily.

2.8 Compilation to Synthesisable VHDL

Compilation process converts the VHDL source files to
synthesisable VHDL file that is recognisable by the VHDL
synthesizer. Source VHDL files has certain parameterised
entries that are not recognised by VHDL synthesiser.
During compilation, unrecognised parameterised entries are
removed and replaced with the actual parameters.
Synthesisable VHDL is created by selecting an object in the

A VHDL Module Generator for Fast Prototyping of Multimedia ASICs

71

design hierarchy explorer and then invoking the
compilation function. The output VHDL file will have the
same name with the selected object name. If the selected
object has child objects under it, the software will compile
all the child objects and combine all objects in one file in
hierarchical order. The output VHDL file is saved in a
destination folder specified at the parameter list associated
with the first object at the design hierarchy explorer. The
synthesisable file can then be analysed by the VHDL
synthesiser.

3.0 TEST CASE: A JPEG DECODER

To show the capability of the VHDL Module Generator in
handling large and complex designs, a baseline gray-scale
JPEG (Joint Photographic Experts Group) [7] decoder has
been designed exploiting the full functionality of the tool.
The test case was accomplished successfully. It contains 99
VHDL entity bodies, or 140k-bytes of VHDL source code,
which takes about 85k logic gates when implemented in
Xilinx FPGA, or 1793 CLBs.

Due to the enormous processing time required to simulate
large digital systems, executing a VHDL model with a
representative data set even on a fast workstation is not
practical. A reconfigurable computing platform was
employed to enable rapid prototyping on it. Reconfigu-
ration from one processing task to another does not require
physical changes but is accomplished by downloading a
hardware personalisation database to a reconfigurable
computing platform within seconds. A designer with this
capability has a means for evaluating the performance of
experimental algorithm or architecture, and a working
component that can be used in the development and testing
of a much larger system [8].

The JPEG decoder has been prototyped and verified in a
reconfigurable computing platform (APS-X208 from
Associated Professional Systems, Inc. with FPGA
XC4052XLA-08). The VHDL coding is basically
optimised for Xilinx FPGA architecture [9]. Nevertheless,
it can be easily retargeted to other implementation
platforms.

3.1 Design Architecture

Fig. 6 shows a simplified block diagram of the baseline
gray-scale JPEG decoder. Table entries and configuration
signals for Huffman table, quantisation table, and DPCM
(Differential Pulse Code Modulation) selector have been
omitted in the diagram to avoid complexity.

Fig. 6: Block diagram of a JPEG decoder

EntDec in the diagram is entropy decoder, which contains a
Huffman decoder and post-entropy decoder. Inside the
post-entropy decoder are a DPCM decoder and a run-length
decoder for decoding DC coefficient and AC coefficients
respectively. Fig. 7 shows the block diagram of the entropy
decoder. A parallel architecture is employed in the entropy
decoder. The JPEG bitstream input, DIN is 32-bit wide, as
the maximum allowable width of a Huffman code plus
amplitude length is 32 bits. 4 cycles are needed to fill in
the pipeline, after that, the entropy decoder produces
coefficient outputs in zigzag order at every clock cycle.

After the entropy decoder, the coefficient outputs are
dequantised using the quantisation table at the dequantiser.
Fig. 8 shows the block diagram of the dequantiser. Inside
the Dequantiser path is just a pipelined multiplier. The
latency of the dequantiser is 4. The dequantiser produces
dequantised coefficients in zigzag order at every clock
cycle.

Fig. 7: Entropy decoder

Fig. 8: Dequantiser

Hani and Koay

72

In JPEG bitstream, multiple colour components can be
stored in interleaved order in a scan. Each component
could have its own Huffman table and dequantisation table.
Also, each component uses its own DPCM predictor. The
table sequencer shown in Fig. 6 is used to provide table IDs
and DPCM predictor selector for the Huffman decoder,
dequantiser, and DPCM decoder in order while decoding
data units. The sequence is depended on the number of
components and sampling factors of the components.

Notice that the JPEG decoder has two separate clocks, the
entropy decoder, dequantiser, and table sequencer use the
same clock (EDCLK), while the IDCT (Inverse Discrete
Cosine Transform) uses another clock. The reason is, the
Huffman decoder has a long combinational logic which
requires a longer clock period. However, the IDCT
requires short but many clock cycles to complete its
computation. Thus, two clocks are used to avoid
compromising the slow clock rate requirement at Huffman
decoder and degrading the whole system performance.

After dequantisation, coefficient data are sent to the IDCT.
The IDCT converts coefficient data from spatial frequency
domain back to original space domain in 8x8 pixel data
units. This is the most computationally intensive part of
JPEG decoder. The two-dimensional IDCT can be obtained
by performing one-dimensional IDCT by rows and then
another 1-D IDCT by columns. In this implementation, due
to the hardware area limitation, the 1-D IDCT for the first
stage and the second stage is sharing the same piece of
hardware. The block diagram of the 2-D IDCT is shown in
Fig. 9. Data from dequantiser is stored in the input buffer
(InBuf). During the first stage, the multiplexer (Mux)
selects data from InBuf. The result of the first stage 1-D
IDCT is stored in the transposition RAM (TRAM). The
TRAM transposes data from row sequence to column
sequence. After 8 rows of input data being processed, the
Mux will select input from TRAM to perform second stage
1-D IDCT. The computed result is stored in the output
buffer (OutBuf). Each 1-D IDCT operation takes 17 cycles.
There are a total of 16 1-D IDCT operations, plus some
initial and transition states, the whole 2-D IDCT process
takes 283 clock cycles.

Fig. 9: 2-D IDCT

After the IDCT operation, the data is level shifted from
signed values to unsigned pixel data. For gray-scale image,
the result is decoded image, which can be displayed on the
screen. The decoding capability of full colour image was
not implemented in the hardware. This was due to
hardware area limitation of the FPGA in used. To decode
colour images, there should be additional Huffman tables,
quantisation tables, and an additional YCbCr (luminance-
blueness-redness) to RGB (red-green-blue) colour space
converter module, which are too large to fit in the FPGA.
Thus, colour image decoding was disabled.

3.2 Hardware Test Result

The JPEG decoder has been implemented in XC4052XLA-
08 on APS-X208 reconfigurable computing platform
successfully. It has been tested with a number of JPEG
files generated from commercial and non-commercial
software, including Microsoft Photo Editor in Microsoft
Office, LView Pro, as well as JPEG encoder from IJG
(Independent JPEG Group).

A wide variety of quality factors and test patterns of JPEG
files has been tested with the JPEG decoder, including
photo pictures, line-art graphics, and several extreme cases
like all white, all black, chess pattern, black and white texts,
etc. All the tests were passed with no visually perceptible
errors comparing with software JPEG viewer (Microsoft
Photo Editor). The tests were performed by saving
reconstructed images into bitmap files for both hardware
and software JPEG decoders, then the two versions of
bitmap files were compared. Table 1 shows comparisons

 Software JPEG decoder Hardware JPEG decoder 8x difference

Image file: Lenna Image size: 256×256 Peak pixel error: 5 Mean error: 0.81

Fig. 10: Comparison of hardware and software JPEG decoders

A VHDL Module Generator for Fast Prototyping of Multimedia ASICs

73

made on different types of images, while Table 2 shows
comparisons made on different quality factors of JPEG
files. In the tables, the peak pixel error is the maximum
pixel difference between hardware and software versions of
reconstructed image. Mean error is the sum of pixel errors
divided by the total number of pixels. Fig. 10 shows a test
image of Lenna, where the first image is JPEG file
reconstructed using software decoder and the second one is
hardware-reconstructed image. The third image is the
differential image, where errors are enlarged 8 times to be
more visible and normalised at neutral gray.

Table 1: Decoded results on different image types

Image type Peak pixel error Mean error
Photo picture 6 0.85
Graphic 5 0.84
Line-art 5 0.51
Black & white text 5 0.50

Table 2: Decoded results on different quality factors

Quality factor Peak pixel error Mean error
100% 6 0.86
75% 5 0.82
50% 5 0.51
25% 5 0.51

From the performance aspect, about 310~370µs is
consumed to decode an 8x8 block depending on the quality
factor of the JPEG source image. This is due to the
bottleneck at the transmission path between the CPU and
the FPGA through ISA interface. The reconfigurable
computing platform provides 8-bit data bus only and does
not support DMA (Direct Memory Access). For the JPEG
decoder itself, if it is run in optimum condition, the actual
hardware computation requires 283 clock cycles per 8x8
block. If the decoder runs at 20MHz, the decoding takes
14.15µs per block.

4.0 RESULT

The success in creating a JPEG decoder using the VHDL
Module Generator, which has a total of 99 VHDL entities,
or 140k-bytes of VHDL source code, or 85k logic gate
counts, has proven the tool’s capability in handling large
and complex designs. Logically, the tool could handle even
larger and more complex designs without problem.

From portability aspect, designs creation were based on
compatibility with the FPGA Express version 3.2 from
Synopsys [3]. Porting designs to a VHDL simulator, the
Active-HDL version 3.5 from Aldec, has been tested with
no problem except additional libraries has to be added for
device specific primitives. However, porting designs to
MAX+plus II version 8.3 from Altera has shown some

incompatibility problems. This is due to lack of support on
certain VHDL syntaxes.

From design productivity aspect, it has been proven that
component reuse can shorten design time. Parameterisation
is the key factor that enables component reuse. First time
design of a parameterised module would take longer design
time than fixed module. After the first time, reusing the
parameterised module is simply modifications of
parameters. For the case of reusing fixed module, designers
have to restudy the whole architecture of the module and
make necessary changes at several places, which is a
tedious, unproductive, and repetitive work. Even worst
when reusing a module previously done by other designers.
Previous works by other researchers have also shown the
same result. In cases of reusing components, only 10% to
35% of design time is needed [5].

Parameterised module has longer VHDL source code,
which means a longer synthesis run time is required to
translate the VHDL code. Nevertheless, synthesis time is
insignificant if compared with the whole design cycle.
Another draw back is, parameterised design could impose
redundant hardware because of generalisation of design.
This could reduce the hardware speed and increase
unnecessary hardware area. By careful design of
parameterised module, this problem could be avoided.

4.1 Comparison with Other EDA Tools

In the object-based HDL generator proposed by Mathur, et.
al [6], C++ classes were used instead of HDL templates to
generate synthesisable VHDL or Verilog codes. The
authors claimed their object-based HDL generation to have
advantages of optimised output HDL with removal of
parameterised elements, flattening of loops, removal of
overloaded functions and parameter size checking. The
authors described the template based HDL codes to have
disadvantages of complex HDL models due to
parameterised coding, unnecessary levels of hierarchy made
synthesis process inefficient and possibility to infer
unnecessary conditional hardware.

However, the C++ module generators are compiled objects,
which cannot be modified by users. This result in a fixed
set of library modules where users cannot expand the
library themselves. Design reuse cannot be facilitated.
Even though if the C++ module generation were user-
modifiable, designers would need to additionally learn
techniques to create HDL using C++. In contrast to the
VHDL Module Generator, all parameterisation elements of
the VHDL Module Generator are written in VHDL code
itself. A uniform design language is utilised. Although
parameterisation of VHDL code increases synthesis run
times, it merely represents an insignificant fraction of the
entire design time. Redundancy in hardware generation
could be resolved by careful design of parameterised
module.

Hani and Koay

74

In the reuse scenario proposed by Preis, et. al [5], three
main types of parameters were identified: component
structure (width), logic functionality (level) and component
functionality (function). The VHDL Module Generator
does provide these three types of parameters, namely
numeric parameter (width), logic parameter (level), and
architecture option or style parameter (function). In
addition, the VHDL Module Generator provides data type
parameter.

Powell and Cesear [1] proposed a design methodology
based on parameterised VHDL model generators. The key
feature of this design methodology is support for rapid
exploration of area, speed, power and functional tradeoffs,
when combined with existing VHDL simulation tools, logic
synthesis tools and switch-level implementation tools. The
VHDL Module Generator contains the major feature of the
design methodology proposed by Powell and Cesear [1].

Several commercial EDA tools are compared with the
VHDL Module Generator. The Xilinx Foundation Series
2.1i from Xilinx, Inc. provides HDL design entry with
design wizard (creation of VHDL skeleton with entity
name, architecture name and interface ports), HDL editor
with language assistant (a set of code templates), and state
machine editor (conversion from state machine to HDL
code). The FPGA Advantage from Mentor Graphics
Corporation provides better VHDL design environment
with state machine entry, block diagram entry, truth table
entry, flow chart entry and VHDL textual entry itself.
Other tools including Active-HDL from Aldec, Inc. and
Visual HDL from Innoveda, Inc. also provide similar
intuitive visual design entries. These commercial EDA
tools cover design process from design entry, logic
synthesis, design verification with back annotation, to
design implementation. In contrast, the VHDL Module
Generator only covers the design entry process without
tight integration to downstream design process, but
provides links to launch downstream tools.

Nevertheless, the VHDL Module Generator shows its
advantages in providing useful features not offered by these
commercial EDA products. Especially, the design-time
hierarchical design exploration and manipulation in
graphical user interface. The other useful feature is the
design parameterisation in graphical user interface, which
facilitates design reuse.

4.2 Novelty of VHDL Module Generator

Schematics design provides noble visualisation of design
and handles hierarchical design proficiently, but it is
cumbersome when handling complex digital circuit with
massive wire routing. VHDL design allows higher level of
description abstraction, but it does not provide visualisation
of design. The VHDL Module Generator, predominantly
based on VHDL entry, encapsulates advantages of both
schematics and textual design entries to offer a rapid-
prototyping design environment.

Conventional VHDL design entry tools enter and organise
design modules in flat manner. Design hierarchy could not
be visualised graphically until the whole design is
synthesised successfully. The VHDL Module Generator
provides design-time visualisation of design hierarchy by
using graphical tree view.

VHDL coding automation, including generation of VHDL
module skeleton and automatic insertion of component
declaration, eliminates cumbersome coding to fulfill
semantic requirements. Hence, designers can concentrate
on the actual coding of design.

Conventional VHDL design entry tools does not provide
facility to move design module's hierarchy. Manual coding
to remove and insert component declaration is needed.
With the VHDL Module Generator, manipulation of design
module hierarchy can be done using clipboard functions at
the design hierarchy tree view seamlessly.

Top-down, bottom-up, and combinational design
methodologies can be applied visually using the design
hierarchy tree view as well.

Parameterisation of design module enables component
reuse. The VHDL Module Generator makes use of existing
generic VHDL coding and adds several more useful types
of parameters. In addition, parameter insertion and
modification are done through graphical user interface,
instead of textual coding. Design engineers often need to
evaluate and choose among different architectural
alternatives (for example, parallelism, pipelining, resource-
sharing, and numeric formats) before obtaining the best
solution that resolves speed, size and power consumption
tradeoffs. Parameterisation feature enables fast evaluation
of design alternatives. Multiple level of parameter passing
is supported to enhance the parameterisation capability of
design.

Interface ports of design modules can be entered, viewed,
and modified from the graphical user interface of the
VHDL Module Generator. Fully bi-directional updating
from interface port editor to VHDL file, and in reverse is
supported.

The VHDL Module Generator provides block diagram view
of design. The feature further visualises the design. Apart
from design visualisation and documentation, the block
diagram editor can also serve as design entry for entering
interface ports and sub-modules.

Many EDA tools do not support dynamic creation of
reusable components. The VHDL Module Generator has a
dynamic module library supporting creation of reusable
components. Modules in library are organised in groups for
easier search and retrieval.

A VHDL Module Generator for Fast Prototyping of Multimedia ASICs

75

5.0 CONCLUSIONS

Hierarchical organisation of design modules through GUI
(Graphical User Interface), fast evaluation on design
alternatives through parameterised design entries, dynamic
management of reusable design modules, and automatic
insertion of VHDL codes are among the key features of the
VHDL Module Generator that permits rapid prototyping of
designs. The following checklist highlights the features
offered by the VHDL Module Generator:

þ Hierarchical design entry
þ Design-time hierarchy visualisation
þ Various design methodologies
þ GUI design hierarchy manipulation
þ Design documentation

þ Design parameterisation
þ Parameterised design entry
þ GUI parameter insertion and modification
þ Design space exploration
þ Multiple level parameter passing

þ Module library
þ Parameterised (template-based) module library
þ Dynamic: new library module creation
þ Predefined module library

þ Block diagram visualisation
þ Design documentation
þ Design hierarchy exploration

þ VHDL coding automations
þ New VHDL module skeleton generation
þ Automatic component declaration
þ Automatic component renaming

þ Interface port editing
þ Fully bi-directional updating (VHDL ↔ GUI)

FPGA has become the best rapid prototyping platform for
hardware designers. By actual hardware implementation on
reconfigurable devices, design verification can be done at
actual or near hardware speed.

One of the fast-evolving applications is multimedia data
compression/decompression. Transferring real-time high
quality multimedia data is in demand. The key technology
that enables this is compression technology. Abundance of
new standards and new design alternatives has been
developed. The VHDL Module Generator is an EDA
design tool meant to meet the design challenges.

The VHDL Module Generator is obtainable from the
following web site:
http://www.fke.utm.my/courseware/sew4274

REFERENCES

[1] S. R. Powell and T. M. Cesear “Rapid Design and
Exploration of Signal Processing Systems Using a
VHDL Model Generator Based Paradigm”, in 2nd
Annual RASSP Conference, 1995.

[2] J. R. Armstrong, Chip-Level Modeling with VHDL.
Singapore, Prentice Hall, 1989.

[3] FPGA Compiler II/FPGA Express VHDL Reference
Manual, Synopsys, Inc., 1999.

[4] S. Mohanty, et al., “SCUBA: An HDL Data-
Path/Memory Module Generator for FPGAs”, in,
Proceedings of VHDL International Users’ Forum,
19-22 October 1997 , pp. 135-142.

[5] V. et al. Preis, “A Reuse Scenario for the VHDL-
Based Hardware Design Flow”, in, Proceedings of
EURO-DAC'95, 18-22 September 1995 , pp. 464-
469.

[6] A. Mathur, et. al., “HDL Generation from
Parameterized Schematic Design System” in,
Proceedings of ASIC Conference and Exhibit, Tenth
Annual IEEE International, 7-10 September 1997 ,
pp. 130-134.

[7] W. B. Pennebaker and J. L. Mitchell, JPEG Still
Image Data Compression Standard . New York, Van
Nostrand Reinhold, 1993.

[8] P. M. Athanas and A. L. Abbott, “Real-Time Image
Processing on a Custom Computing Platform”.
Computer, Vol. 28, No. 2, February 1995, pp. 16-25.

[9] Synopsys (XSI) Synthesis and Simulation Design
Guide, Xilinx, Inc., 1998.

BIOGRAPHY

Mohamed Khalil Hani obtained his B.Eng. in
Communication from University of Tasmania, M. Eng. in
Computer Engineering from Florida Atlantic University,
and Ph.D. in Digital System and Computer Engineering
from Washington State University. He is currently the
Vice-Dean at Faculty of Electrical Engineering, Universiti
Teknologi Malaysia. His expertise includes VLSI
architecture, artificial intelligence, digital design
automation, and computer-aided digital design.

Kah Hoe Koay obtained his first degree with first class
honour in Electrical Engineering from Universiti Teknologi
Malaysia in 1998. Currently, he has completed his masters
degree in Electronic Engineering at the same institution.
His research interest includes software engineering,
artificial intelligence and computer engineering. He is an
affiliate member of IEEE Computer Society since 1997 and
member of Institute of Engineer Malaysia since 1997 as
well.

