
Malaysian Journal of Computer Science, Vol. 13 No. 1, June 2000, pp. 56-64

56

OBJECT-ORIENTED APPLICATION FRAMEWORK ON MANUFACTURING DOMAIN

Sai Peck Lee, Siew Khim Thin, Hong Song Liu
Faculty of Computer Science and Information Technology

University of Malaya
50603 Kuala Lumpur

email: saipeck@fsktm.um.edu.my

ABSTRACT

The problematic issues in the development of
manufacturing software systems are related to the various
nature of manufacturing systems, which are wide, dynamic
and complex.  The purpose of this paper is to provide a
solution by using framework-based software engineering to
solve these problems.  Framework-based software
engineering is the idea of constructing software systems
based on the integration of reusable components rather
than developing software from scratch.  The manufacturing
application framework proposed in this paper is to be
developed as a set of integrated reusable components,
which can be adapted to suit specific manufacturing
applications.  This paper focuses on two subdomains of the
manufacturing domain, i.e., Production Management (PM)
and Statistical Quality Control (SQC).  A generic model is
defined based on the structure and behavior of each of the
PM and SQC subdomains, from which the design
infrastructure of the application framework is derived,
based on the concept of design pattern.  The details of the
application framework development by integrating object-
oriented technology and component-based development to
achieve large-scale software reuse for manufacturing
application develop-ment projects are also discussed.

Keywords: Application Framework, Component-Based
Development, Manufacturing Domain,
Object-Oriented Technology

1.0 INTRODUCTION
 
 Over the last two decades, software development has
changed significantly.  Its evolution has been motivated
largely by the quest to help software developers produce
software faster and to deliver more value to end-users.  The
limitations of traditional programming and today’s system
software environments have motivated the software
industry to start to embrace systematic software reuse due
to its potential to significantly increase the developer’s
productivity and encourage innovation.  Large-scale
software reuse is able to improve quality and reduce cost
and time-to-market in software development [1].
 
 Object-oriented application framework (OOAF) is an idea
that comes from the combination of object-oriented
technology (OOT) and application framework.  The focus
should not only be on OOT or application framework, but

on how OOT should be delivered in order to fully realize
the benefits that it can offer in the development of
application frameworks.  An OOAF, which is an extensible
set of object-oriented reusable components that are well
integrated to execute well-defined sets of computing
behavior on a certain application domain, is a good answer
to a dramatic improvement in software development.  This
paper discusses the notion of the OOAF and how it can be
used to assist software development in the domain of
manufacturing.
 
 
2.0 MANUFACTURING SYSTEM DOMAIN
 
2.1 Problematic Issues
 
 Manufacturing is a wide, complex and dynamic domain. As
such, to develop a flexible and good quality manu-facturing
software is not an easy task.
 
 Manufacturing is considered as a wide-range domain, due
to its numerous types of manufacturing operations [2].
Three principal manufacturing operations are Job Shop,
Repetitive Manufacturing and Batch Manufacturing.  A Job
Shop manufacturing business conducts Make To Order
(MTO), which only makes when customers place order, and
the design of the products is according to the design
supplied by the customers.  Some of these businesses
engineer and build items based on performance
requirements specified by the customer.  Job Shop
generally deals with products of high variety and low
volume in quantity.  For example, scientific equipment and
medical equipment are the products of Job Shop.
Repetitive Manufacturing, repetitive production and
production lines are terms used for mass production
facilities that produce a high volume of the same or similar
units of products that follow the same path through the
production steps.  Repetitive Manufacturing generally deals
with products of low variety and high volume in quantity.
An example would be an automobile assembly line.  A
Batch Manufacturing facility makes some intermediate
variety of products and produces intermediate volume of
each product. Batch Manufacturing is a hybrid of Job Shop
and Repetitive Manufacturing. An example would be a
company that makes small hand tools like hand mixers,
electric screwdrivers, etc.  As such, the requirements in
software utilities for these different types of manufacturing



Object-Oriented Application Framework on Manufacturing Domain

57

are quite different.  There is no one kind of basic structure
like an application framework that can be specified to the
similar but non-identical types of applications to suit the
similar but non-identical manufacturing operations.  An
application framework is highly adept to the above-
mentioned differences of the manufacturing environment.
 
 Manufacturing software is one of the most complex
software.  There are a lot of applications in this domain,
such as production planning, inventory control, work-in-
process tracking, scheduling, production operation control,
capacity planning, process capability analysis, process
control, control chart plotting, acceptance sampling,
statistical analysis, etc.  A problem facing this industry is
that these applications are not designed to work together
and are difficult to integrate.  Also, it is very difficult and
expensive to develop an integrated manufacturing software
from scratch.  Instead of developing the manufacturing
software from scratch, a better choice is to reuse some
generic design and implemention built into an application
framework.
 
 Manufacturing is a dynamic domain.  A lot of changes
happen from time to time such as the change of technology,
standard of production regulation, customer’s specification,
report’s format, etc.  These changes will cause the change
of process in manufacturing as well as the software that
assists its process.  For example, when a new technology is
invented, from CD-ROMs to DVD players or Pentium II to
Pentium III processors, the process and the software that
keep track of the products in the production line might have
to be modified.  As such, the manufacturing software must
be as flexible and as extensible as possible.
 
2.2 General Requirements

The manufacturing domain can be divided to include two
subdomains, Production Management (PM) and Statis-tical
Quality Control (SQC).

Production Management is designed to control the
production and inventory in a manufacturing firm by
conducting several activities such as production planning,
inventory control, capacity planning, etc.

For Statistical Quality Control, SQC methods are useful
tools for appraising and monitoring quality performance
and are key ingredients to successful application of quality
control. Quality control relies on the continuous monitoring
of quality of the input and output of the processes
producing products and services.  For example, a control
chart is used to monitor the quality of the products in the
process of the production line.

2.2.1 Production Management

There is a widely used generic version of production
management system, called Manufacturing Resource
Planning (MRP II) System [2].  The common structure of
the MRP II system is shown in Fig. 1.

Each of the boxes represents a separate subsystem.  Each
subsystem performs certain functions.  The arrows in the
diagram indicate information flows.  This system is divided
into three levels.  The first level is the Top Management
Planning level, which consists of production planning and
resource planning subsystems.  Some manufacturing
companies also include business planning and marketing
planning subsystems into this level.  At this level, there are
long planning horizons (about five years) and broad
decisions.  The second level is the Operations Management
Planning level, which consists of Master Production
Scheduling (MPS), Rought-Cut Capacity Planning (RCCP),
Material Requirement Planning (MRP) and Capacity
Requirement Planning (CRP) subsystems.  At this level,
there are short planning horizons and more specific
decisions.  The last level is the Operations Management
Execution level, which consists of the Production Activities
Control (PAC) subsystem.  This level is to make sure
productions and jobs are in schedule.

The object-oriented application framework proposed in this
paper, is to be built based in part on the common structure
of the MRP II system, in such a way that, it is able to be
used to create applications of the MRP II system by
adapting the generic component systems provided by the
framework.  For example, the generic forecasting
component system of the framework can be used to extend
to any specific forecasting application method as needed,
such as moving average method, exponential smoothing
method, Box-Jenkins method, etc.

2.2.2 Statistical Quality Control (SQC)

SQC is the application of statistical techniques to ensure
satisfactory quality.  There are three major subgroups of
techniques: statistical process control, acceptance sampling
and traditional statistical techniques, as shown in Fig. 2.  In
Statistical Process Control (SPC), tools called control charts
are used primarily to prevent or detect production of
defective products (finished goods, assemblies,
components) or service.  This allows the process to
continue or stop and inspection is carried out to find the
cause.  There are two types of control charts: control charts
for attributes and control charts for variables.  Acceptance
sampling is the application of statistical techniques to
determine whether a quantity of material should be
accepted or rejected, based on the inspection or testing of a



Lee, Thin and Liu

58

Production Planning

Master Production
Scheduling

(MPS)

Material Requirement
Planning
(MRP)

Production Activity Control
(PAC)

Resource
Planning

Rough-Cut
Capacity
Planning
(RCCP)

Capacity
Requirement

Planning
(CRP)

Inventory
Control

Fig. 1: Generic model of Manufacturing Resource Planning (MRP II) System

Quality control methodsQC input QC output

Statistical
Process

Control (SPC)

Acceptance
sampling

Statistical
techniques

Process
performance

Product
quality

judgement

Product-design
specification

Accept or
reject

Quality of the
products is

judged

Allow process
to continue or

stop

Fig. 2: The basic structure of a statistical quality control system

sample.  To judge the quality of products or service,
traditional statistical techniques such as frequency
distribution, measures of central tendency and dispersion,
regression and probability distribution can be used [3].

The development of the object-oriented application
framework is based also on the common application
systems of the SPC, acceptance sampling, and traditional
statistical technique which are widely used in quality
control in manufacturing.  The construction of a control
chart application system basically involves implementing a
reusable production control component in the framework
for the purpose of adaptation or configuration.  A generic
production control component will be provided by the

application framework to support a variety of control charts
such as R-chart, X-chart, n-chart, etc, in one of its
variability points meant for adaptation according to the
specific needs of the reuser.

3.0 OBJECT-ORIENTED APPLICATION FRAME-
WORK (OOAF)

3.1 Fundamental Principles

Achieving widespread reuse of complex software
components requires a concerted focus on the fundamental
design of the application framework that underlies software



Object-Oriented Application Framework on Manufacturing Domain

59

systems on a certain application domain.  An application
framework aids the development of software by expressing
the structure and collaboration of components to developers
at a level higher than source code or object-oriented design
models that focus on individual objects and classes.  It
facilitates reuse of software architecture [4].

If object-oriented (OO) software is to become an
engineering discipline, the successful practices and design
expertise must be documented systematically and
disseminated widely.  An application framework is an
important tool for documenting these practices and
expertise, which traditionally existed in the minds of expert
software architects or buried deep within the source code of
complex systems.  Without a thorough understanding of the
framework underlying a domain-specific architecture,
design, and implementation, OO software reuse will remain
a largely unfulfilled promise.

An OOAF is a skeleton implementation of an application or
application subsystem in a particular problem domain.  It is
technically composed of concrete and abstract classes and
provides a model of interaction or collaboration among the
instances of classes defined by the framework [5].  A
family of similar, though not identical, applications can be
built out of a single framework.  A framework is also a
methodology and a set of software libraries that allow
software developers to build applications.  The following
summarizes the major advantages of a framework [6]:

• Provide an infrastructure and an architectural
guidance: By virtue of the interconnections among the
class libraries, much of the needed functionality
already exists in the framework, thus reducing coding,
testing, and debugging.  In addition, object-oriented
frameworks encourage better design in the code in the
sense that developers are provided an “example” to
guide them to more effectively utilize object
technology.  Applications developed from frameworks
tend to be smaller, as well as more maintainable and
reusable.

• Provide a mechanism for reliably extending
functionality: While objects and object classes provide
interfaces for extending functionality at a fine-grained
level, frameworks provide this flexibility at a higher
level.  In this way, applications can be developed by
using the framework as a starting point and writing
smaller amount of code to modify or extend the
framework’s behaviour.  These extensions can be
added without sacrificing compatibility and
interoperability because the interfaces are well defined.

• Reduce maintenance: Due to inheritance, when a
framework bug is fixed or a new feature is added, the
benefits of those changes become available more
quickly to the derived classes or components.  Also,
changes are made only in one place, thus, the chance of
introducing additional errors in the code is minimized.

3.2 Literature Review

A review of the literature on frameworks in general, reveals
that most of them have their subjected advantages for
programmer productivity and code reliability.  Much
research has been done on this topic for more than a
decade.  Frameworks are important, and continue to
become more important.  There are quite a number of
available frameworks such as Taligent, Model View
Controller (MVC), Domain-Specific Software Architecture
(DSSA), Java Bean, OLE, etc.

Taligent’s framework is an independent joint venture of
Apple Computer, Inc., IBM Corporation, and Hewlett-
Packard Company.  This framework defines the behavior of
a collection of objects, providing an innovative way to
reuse both software design and code [6].  Taligent has
designed frameworks for system software functions, such
as networking, multimedia and database access. Taligent’s
framework provides two kinds of Application Programming
Interface (API).  The first API is the client API which is
used by other frameworks or application developers.  This
API is for developers who just want a simple abstraction
and to simply be a user of the framework’s services.  The
second API is known as the framework API and is for
developers who want to take advantage of the flexibility
and extensibility that the framework provides.  This API
provides all the hooks to the developer’s codes that modify
the framework’s behavior to provide the desired software-
or hardware-based solution.

Model View Controller (MVC), as a user-interface
framework, is actually a design pattern which was
developed using the Smalltalk programming environment
for the creation of user interfaces [7, 8].  The MVC
paradigm is a way of breaking an application, or even just a
piece of an application's interface, into three parts: the
model, the view, and the controller.  The advantage of the
MVC paradigm is that it effectively limits and defines the
interaction between the interface components and the
underlying problem-domain classes.  The Model is the
problem-domain class on which an interface is to be
created.  There is an actual class Model for subclassing to
create any problem domain class to be affected by an
interface or to display to an interface.  The View is the class
that receives input from the user (e.g., button clicks, key
presses, etc.) and displays output to the user (e.g., display
boxes, colored symbols, visualizations, etc.).  The
Controller is the class that deals with the physical input
devices and translates those signals (mouse movement,
keyboard input) into messages to the appropriate view.

A good framework facilitates application system
development, promotes achievement of functional
requirements, and supports system reconfiguration.  The
Domain-Specific Software Architecture (DSSA) provides, a
reference architecture designed to meet the functional
requirements shared by applications, principles for
decomposing expertise into highly reusable components,



Lee, Thin and Liu

60

and an application configuration method for selecting and
configuring components within the architecture to meet a
particular application requirement [9].

4.0 METHODOLOGY IN THE DEVELOPMENT
OF THE OOAF

The methodology used in this project is based on the
integration of some existing concepts of Object-Oriented
Domain Engineering (OODE) modeling notation and
method, which makes it easy to compose reusable
components [10, 11, 12, 13].  It is a systematic technique to
establish good system architecture to help in application
framework development at the same time controlling the
complexity of the system.  The develop-ment process
supported by the methodology for the framework is referred
to as Application Architecture Engineering (AAE) as
shown in Fig. 3.

High-level
Analysis Model

Layered
Architecture

System

Component and
Application
Systems

 Detailed Design
Model

Survey of
existing domain

Testing

Domain Analysis

Implementation

High-level
Design

Detailed Design

Fig. 3: Stages of Application Architecture Engineering
(AAE) process

AAE starts from domain analysis through to
implementation and as the way to decompose the overall
standardization set of applications into a suite of application
systems and supporting component systems.  The process
architects the Layered Architecture System which consists
of the interfaces of the subsystems and component systems
that support the complete architecture of related

applications.  There are five iterative stages of the process
described as follows:

• Survey of existing domain systems: The survey lays
the foundation of knowledge about the domain.  In the
survey, the requirements of each domain system’s
external actors, business processes and models are
captured.

• Domain analysis: Identifies the functionalities and
understands the variable and non-variable
functionalities in the domain.  Non-variable function-
alities are good candidates for generic component
systems.  The main aim is to identify the candidates for
application and components systems for constructing a
high-level analysis model.

• High-level design: The high-level analysis model
serves as a foundation for producing a prototype design
model that defines the layered architecture system in
terms of application systems and component systems.
The interfaces of the application systems and
component systems are defined as part of the detailed
design of the layered architecture system.

• Detailed design: The detailed design model, which
contains several design patterns as well as a library of
class inheritance hierarchy used by various component
systems, is built based on the layered architecture
system.  The library includes concrete and abstract
classes with variation points.  Most attributes and
methods of each class are also defined in this phase.

• Implementation: The application and component
systems will be implemented as defined in the detailed
design of the layered architecture system.

• Testing: Each application system and component
system is tested individually and also tested as part of
the layered architecture system as a whole.

5.0 APPLICATION FRAMEWORK DEVELOP-
MENT STRATEGY

The manufacturing application framework to be developed
is not just an integrated set of software components on
manufacturing domain, but an application ready to be
assembled, completed with some needed tools, training,
user guide and instructions.  The application framework is
divided into two layers, which are the application layer and
the component layer.  Fig. 4 shows a part of the application
framework in the Production Management subdomain.

Both layers in the framework are interoperating with each
other in the same layer with some dependencies of the
application layer on the component layer.  In the
application layer, the application systems that can be
constructed from the framework are known beforehand.  In
the component layer, the component systems that are
needed to construct a particular application system are also
known beforehand.  As illustrated in Fig. 4, the types of
application systems that can be constructed from the
framework are the Forecast application systems and



Object-Oriented Application Framework on Manufacturing Domain

61

Production Schedule application systems.  To develop a
specific Forecast application system, the two component
systems named Historical Data Management and PP_item
Forecast Management will be imported automatically by
the system for customization by the software developer.
The same idea applies to develop a specific Production
Schedule application system.

Fig. 5 shows a part of the application framework in the
SQC subdomain.  Two types of application systems that
can be constructed from the framework are the Attribute
Chart application systems and Process Capability
application systems.  A software developer can customize
and develop a specific Attribute Chart application system
by importing the component systems such as SPC Data

Management, SPC Process Management, Control Chart
Management and Basic Statistical Management.  On the
other hand, to develop a specific Process Capability
application system, Basic Statistic Management and
Process Capability Management component systems need
to be imported.

In the component layer, the component systems are
designed to be customizable, adaptable and configurable in
order to enable the development of a specific application
system from the application framework much easier.
Documents for the application and component systems
interface as well as their variation points are also provided
in the application framework in order to assist the reuser to
fully utilize the features of the framework.

<<import>><<import>>

<<application system>>

Production Schedule

<<application system>>

PP_item Forecast
Management

<<component system>>

Historical Data
Management

<<component system>>

Production Plan
Management

<<component system>>

Application Layer

Component Layer

Forecast

Fig. 4: A part of Production Management in the manufacturing application framework.

<<Component system>>

SPC Process
Management

<<Component system>>

SPC Data
Management <<Component system>>

Control Chart
Management <<Component system>>

Basic Statistical
Management

<<Component system>>

Process Capability
Management

Application Layer

Component Layer

<<Application system>>

Attribute Chart

<<Application system>>

Process Capability

<<import>><<import>>

Fig. 5: A part of SQC in manufacturing application framework



Lee, Thin and Liu

62

<<component system>>
PP_item Forecast Management

Forecaster

PP_schedule

PP_item
Historical Data

variation point

entity component

control component

boundary component
Interface

Fig. 6: The BCE diagram of PP_item Forecast Management component system

For example, the PP_item Forecast Management
component system can be configured into different
forecasting methods in order to develop a specific Forecast
application system.  Following the notation of Jacobson et
al [12] for defining design pattern, the Boundary-Control-
Entity (BCE) diagram of a part of the PP_item Forecast
Management component system is shown in Fig. 6.  There
is a control component called Forecaster, which is
interacting with two entity components called PP_item
Historical Data and PP_schedule.  The PP_item Historical
Data component supplies the historical data of the sales of
production planning item to the Forecaster control
component in order to forecast the future sales orders and
record in the production planning item schedule, called
PP_schedule.

The forecasting method of the generic component can be
adapted to different types of methods, such as moving
average, exponential smoothing, Box-Jenkins, etc.
according to the reuser’s needs through the variation point
of the Forecaster control component in order to develop a
specific Forecast application system.

The design pattern used to implement the application
framework is based on the Template Method pattern as
defined by Larman [14].  This pattern is the core of the
system.  The idea is to define a template method in a
superclass that defines the skeleton of an algorithm, with its
varying and unvarying parts.  The Template Method
invokes other methods.  These methods are concrete
methods and abstract methods, which may be overridden in
a subclass.  Thus, subclasses can override the varying
methods in order to add their own unique behavior at
various points of variability.

Fig. 7 shows the design pattern of the PP_item Forecast
Management component system.  The method named
forecast is a template method of the superclass called
Forecaster.  This template method consists of two concrete
methods, named historyDataRetrieval  and scheduleUpdate,
and one abstract method, named forecastMethod.  At first
the template method calls historyDataRetrieval to retrieve

the history data of a certain item.  The method
historyDataRetrieval takes two arguments, which are the
identification number (item_ID) of the item to be forecasted
and the duration of the history data needed to be retrieved
(period).  This method will return an object of
PP_item_Historical_Data, which contains the history data
in a certain period of the item.

The second method called by the template method is
forecastMethod.  The method forecastMethod is an abstract
method in the Forecaster abstract class, which can be
overridden in each of the subclasses as redefined methods.
For example, in the MovingAverageForecaster subclass,
forecastMethod is overridden to perform the moving
average forecasting method; and in the
ExponentialSmoothingForecaster subclass, forecastMet-
hod is overridden to perform the exponential smoothing
forecasting method.  The method forecastMethod takes an
object of PP_item_Historical_Data  as an argument and
returns an object of Forecast_result, which contains the
result of the forecasting method.  The last method called by
the template method is scheduleUpdate for updating the
production schedule (PP_schedule) of the item.  It takes
two arguments, which are PP_schedule and the object that
contains the result of the forecasting (Forecast_result).

6.0 CONCLUSION

This paper has described a framework-based approach to
the development of application systems by reusing
framework design in the domain of manufacturing.  The
focus of the paper is on the manufacturing application
framework development with the aim of providing the same
ideas for future reuse efforts.  The purpose of the project is
to provide an integrated application framework, operating
environment, common databases and interface standards for
developing manufacturing software applications.  The
manufacturing application framework aims to enable large-
scale software reuse to reduce cost and time of developing
specific manufacturing application systems.



Object-Oriented Application Framework on Manufacturing Domain

63

//redefined method
Forecast_result forecastMethod(dd)
{
//This method has been overridden to
//perform the exponential smoothing
//forecast method
}

//redefined method
Forecast_result forecastMethod(dd)
{
//This method has been overridden to
//perform the moving average forecast
//method
}

//concrete method
scheduleUpdate(sch, fr)
{
…
…
}

//concrete method
PP_item_Historical_Data historyDataRetrieval(item_ID, period)
{
…
return dd;
}

Forecaster

PP_item_Historical_Data dd;
PP_schedule sch;
Forecast_result fr;

forecast( item_ID, period)

PP_item_Historical_Data historyDataRetrieval(item_ID, period)

Forecast_result forecastMethod(PP_item_Historical_Data)

scheduleUpdate(PP_schedule, Forecast_result)

//template method
forecast( item_ID, period)
{
dd = historyDataRetrieval(item_ID, period);
fr = forecastMethod(dd);
scheduleUpdate(sch, fr);
}

°

°

°

°

Forecast_result forecastMethod(dd)

MovingAverageForecaster

Forecast_result forecastMethod(dd)

ExponentialSmoothingForecaster

°

Fig. 7: Design pattern of the PP_item Forecast Management component system

The integration of the application framework with OOT
provides a unique solution for the development of an
object-oriented application on the manufacturing domain,
which is wide-range, dynamic and complex.  The object-
oriented application framework will serve as a standard
manufacturing domain design infrastructure for the
development of specific manufacturing application systems.

REFERENCES

[1] Emmanuel Henry and Benoit Faller, “Large-Scale
Industrial Reuse to Reduce Cost and Cycle Time”,
IEEE Software, September 1995, pp. 48-53.

[2] James B. Dilworth, Operation Management, Design,
Planning and Control for Manufacturing and
Services, McGraw-Hill, Inc., 1992.

[3] William S. Messina, Statistical Quality Control for
Manufacturing Managers, John Wiley & Sons, Inc.,
1987.

[4] Douglas C. Schmidt, “Using Design to Develop
Reusable Object-Oriented Software”,
http://www.wustl.edu/~schmidt/OOWG-
statement.html .

[5] G. Froehlich, H. J. Hoover, L. Liu, and P. Sorenson,
“Designing Object-Oriented Frame-works”.  In, S.
Zamir, editor, Handbook of Object-Oriented
Technology. CRC Press, Boca Raton, FL., 1997.

[6] “Leveraging Object-Oriented Technology Frame-
work”,
http://www.ibm.com/java/education/ooleveraging
/index.html .

[7] Glenn E. Krasner and Stephen T. Pope, “A
Cookbook for Using the Model View Controller
User Interface Paradigm in Smalltalk-80”.  Journal
of Object-Orientated Programming, August/Sep-
tember 1988, pp. 26-49.

[8] T. J. Biggerstaff, and C. Richter, “Reusability
Framework, Assessment, and Directions”. IEEE
Software 4, March 1987, pp. 41-49.

[9] Barbara Hayes-Roth, Karl Pfleger, Philippe Lalanda,
Philippe Morignot, and Marko Balabanovic, “A
Domain-Specific Software Architecture for
Adaptive Intelligent Systems”, IEEE Transactions
on Software Engineering , Vol. 21, No. 4, April
1995, pp. 288-295.

[10] Wing Lam, “The Development of Very High-Level
Components for Software Engineering”, In, IASTED
International Conference Software Engineering ,
November 1997, pp. 49-52.

[11] Roberto Bellinzona, Politecnico di Milano and
Maria Grazia Fugini, Reusing Specifications in OO
Applications, IEEE Software, March 1995, pp. 65-
75.



Lee, Thin and Liu

64

[12] Ivar Jacobson, Martin Griss and Patrick Jonsson,
Software Reuse Architecture, Process and
Organization for Business Success, Addison-
Wesley, 1997.

[13] Sally M. Chan and Terence L. Lammers, “The
OODE Method – Designing, Building and
Delivering Domain Frameworks”, Boeing
Commercial Airplane Group – Information
Systems, June 1997.

[14] Craig Larman, Applying UML and Pattern ,
Prentice Hall, Inc., 1997.

BIOGRAPHY

Sai Peck Lee obtained her Master of Computer Science
from University of Malaya in 1990, her D.E.A of Computer
Science from University of Paris VI Pierre et Marie Curie
in 1991 and her PhD of Computer Science from University
of Paris I Panthéon-Sorbonne in 1994.  She is an Associate
Professor in the Faculty of Computer Science and
Information Technology, University of Malaya, Malaysia.
Her research interests include Software Engineering,
Object-Oriented Methodologies, Software Reuse,
Information System and Database Engineering.

Siew Khim Thin is currently pursuing his Master degree in
the Faculty of Computer Science and Information
Technology, University of Malaya, Malaysia.

Hong Song Liu is currently pursuing his Master degree in
the Faculty of Computer Science and Information
Technology, University of Malaya, Malaysia.


